Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Аминокислоты, их состав и химические свойства: взаимодействие с соляной кислотой, щелочами, друг с другом. Биологическая роль аминокислот и их применение.



Аминокислоты – соединения, которые содержат в молекуле одновременно аминогруппу и карбоксильную группу. Простейшим представителем аминокислот является аминоуксусная (глицин) кислота: NH2-CH2-COOH

Так как аминокислоты содержат две функциональные группы, то и свойства их зависят от этих групп атомов: NH2- и –CООН. Аминокислоты – амфотерные органические вещества, реагирующие как основание и как кислота.

Физические свойства.

Аминокислоты представляют собой бесцветные кристаллические вещества, хорошо растворимые в воде и малорастворимые в органических растворителях. Многие аминокислоты имеют сладкий вкус.

Химические свойства

+ кислоты (проявляются основные свойства)

+основания

(Проявляются кислотные свойства)
+оксиды металлов

+металлы

+спирты

+ аммиак

+аминокислоты – образование пептидов

Аминокислоты не изменяют окраску индикатора, если количество аминогрупп и карбоксильных групп одинаково.

1) NH2-CH2-COOH + НCl → NH3Cl-CH2-COOH

2) NH2-CH2-COOH + NaOH → NH2-CH2-COONa + H2O

3) NH2-CH2-COOH + NH2-CH2-COOH → NH2-CH2-CO NH-CH2-COOH + H2O

Биологическая роль аминокислот заключается в том, что из их остатков образуется первичная структура белка. Существует 20 аминокислот, которые являются исходными веществами для производства белков в нашем организме. Некоторые аминокислоты применяются в качестве лечебных средств, например глутаминовую кислоту - при нервных заболеваниях, гистидин – при язве желудка. Некоторые аминокислоты находят применение в пищевой промышленности, их добавляют в консервы и пищевые концентраты для улучшения пищи.

Билет № 16

Анилин – представитель аминов. Химическое строение и свойства, получение и практическое применение.

Амины - это органические соединения, представляющие собой производные аммиака, в молекуле которого один, два или три атома водорода замещены на углеводородный радикал.

Общая формула:

R-NH2

Физические свойства.

Анилин- бесцветная маслянистая жидкость со слабым характерным запахом, малорастворим в воде, но хорошо растворим в спирте, эфире, бензоле. Температура кипения 184°C. Анилин- сильный яд, действует на кровь.

Химические свойства.

+кислоты (реакции по аминогруппе)

+ Br2(водный раствор)

C6H52 + НCl → C6H53Cl

Химические свойства анилина обусловлены наличием в его молекуле аминогруппы —NH2 и бензольного ядра, которые оказывают взаимное влияние друг на друга.

Получение.

Восстановление нитросоединений – реакция Зинина

C6H52 + Н2 → C6H52 + Н2О

Применение.

Анилин применяется в производстве фотоматериалов, анилиновых красителей. Получают полимеры, взрывчатые вещества, лекарственные препараты.

Билет № 17

Белки - как биополимеры. Строение, свойства и биологические функции белков.

Белки (протеины, полипептиды) — высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью аминокислот. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот.

Структура белка

Молекулы белков представляют собой линейные полимеры, состоящие из α -аминокислот (которые являются мономерами) и, в некоторых случаях, из модифицированных основных аминокислот. Последовательность аминокислот в белке соответствует информации, содержащейся в гене данного белка.

· Первичная структура — последовательность аминокислот в полипептидной цепи-линейно.

· Вторичная структура - закручивание полипептидной цепи в спираль, поддерживающееся водородными связями.

· Третичная структура —упаковка вторичной спирали в клубок. Поддерживают третичную структуру: дисульфидные связи, водородные связи.

 

Свойства

Белки являются амфотерными веществами, также как и аминокислоты.

Отличаются по степени растворимости в воде, но большинство белков в ней растворяются.

Денатурация: Резкое изменение условий, например, нагревание или обработка белка кислотой или щёлочью приводит к потере четвертичной, третичной и вторичной структур белка. Денатурация в некоторых случаях обратима.

Гидролиз: Под воздействием ферментов происходит гидрол белка до составляющих его аминокислот. Этот процесс происходит, например, в желудке человека под воздействием таких ферментов как пепсина и трипсина.

Функции белков в организме


Каталитическая функция

Ферменты — группа белков, обладающая специфическими каталитическими свойствами. Среди ферментов можно отметить такие белки: трипсин, пепсин, амилаза, липаза.

Структурная функция

Белки – это строительный материал почти всех тканей: мышечных, опорных, покровных.

Защитная функция

Белки антитела, способные обезвреживать вирусы, болезнетворные бактерии.

Сигнальная функция

Белки-рецепторы воспринимают и передают сигналы, поступившие от соседних клеток.

Транспортная функция

Гемоглобин переносит кислород из лёгких к остальным тканям и углекислый газ от тканей к лёгким.

Запасающая функция

К таким белкам относятся так называемые резервные белки, которые запасаются в качестве источника энергии и вещества в семенах растений и яйцеклетках животных. Они служат строительным материалом.

Двигательная функция

Белки, осуществляющие сократительную деятельность это актин и миозин

 

 


Билет №18

1. Общая характеристика высокомолекулярных соединений: состав, строение, реакции, лежащие в основе их получения ( на примере полиэтилена).

Высокомолекулярные соединения (полимеры) – это вещества, макромолекулы которых состоят из многократно повторяющихся звеньев. Их относительная молекулярная масса может измеряться от нескольких тысяч до многих миллионов.

Мономер – это низкомолекулярное вещество из которого получают полимер.

Структурное звено – многократно повторяющиеся в макромолекуле полимера группы атомов.

Степень полимеризации – количество повторяющихся структурных звеньев.

nСН2=СН2 → (-СН2-СН2-)n

 

 


Полимеры могут быть получены в результате реакций полимеризации и поликонденсации.

Признаки реакции полимеризации:

1. Не образуется побочных веществ.

2. Реакция идет за счет двойных или тройных связей.

nСН2=СН2 → (-СН2-СН2-)n– реакция полимеризации этилена - образование полиэтилена.

Признаки реакции поликонденсации:

1. Образуются побочные вещества.

2. Реакция идет за счет функциональных групп.

Пример: образование фенолформальдегидной смолы из фенола и формальдегида, полипептидной связи из аминокислот. При этом образуется кроме полимера побочный продукт – вода.

Высокомолекулярные соединения имеют определенные преимущества перед другими материалами: они устойчивы к действию реагентов, не проводят ток, механически прочные, легкие. На основе полимеров получают пленки, лаки, резину, пластмассы.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-06-05; Просмотров: 8957; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.026 с.)
Главная | Случайная страница | Обратная связь