Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ЭКСПЛУАТАЦИЯ ЛИНЕЙНЫХ ИЗОЛЯТОРОВ



Изоляторы на воздушных линиях предназначены для изоляции проводов от заземленных элементов опор. Они изготовляются из фарфора, закаленного щелочного стекла, стеклопластиков и других материалов.

Механические свойства стеклянных изоляторов выше, чем фарфоровых, а эксплуатация их проще, так как измерения их электрической прочности не требуется, поскольку при электрическом пробое или механическом воздействии стеклянная тарелка изолятора не растрескивается, а рассыпается, что легко обнаруживается при осмотрах. По конструктивному исполнению изоляторы подразделяют на подвесные, штыревые и стержневые. Стержневые фарфоровые изоляторы не нашли широкого распространения, так как были случаи полного их разрушения с падением провода на землю.

Линейные подвесные изоляторы собирают в гирлянды, которые бывают поддерживающими и натяжными. Число и тип изоляторов в гирляндах выбирают в зависимости от номинального напряжения линии, материала опор (металлические, железобетонные, деревянные), загрязненности атмосферы в местах прохождения линии и т. д. Практически число изоляторов в гирляндах наиболее часто принимают согласно табл. 12.1.

Таблица 12.1. Число изоляторов в поддерживающих гирляндах на металлических и железобетонных опорах

    Число изоляторов при рабочем
Изоляторы   напряжении линии, к В  
  20—35
Фарфоровые:              
ПФ6-А
ПФ6-Б   __
ПФ-9, 5 _ __
ПФ-14, 5
Стеклянные:              
ПС6-А —.
ПС-11 __ И __
ПСЗО-А

Линейные изоляторы работают при непрерывно изменяющихся условиях окружающей среды (температура, туман, атмосферные осадки в виде дождя, снега и т. д.). Они подвергаются постоянному воздействию рабочего напряжения, периодическим воздействиям грозовых и коммутационных перенапряжений; испытывают значительные механические нагрузки от массы и тяжения проводов. В результате воздействия всех этих факторов изоляторы со временем «стареют» — снижают свои электрические и механические характеристики.

Дефектные изоляторы обнаруживаются при осмотрах и ревизиях ВЛ. Кроме того, не реже 1 раза в 6 лет проводится контроль электрической прочности подвесных фарфоровых изоляторов штангой. Измерение электрической прочности стеклянных изоляторов в эксплуатации не проводится: их состояние определяется визуально при осмотрах линий. Контроль изоляторов штангой заключается в измерении распределения напряжения по отдельным изоляторам гирлянды. Сумма измеренных на изоляторах напряжений должна всегда равняться приложенному к гирлянде фазному напряжению. Признаком дефектности считается

резкое снижение напряжения на изоляторе (рис 12 1) Дефектным считается изолятор, значение напряжения на котором менее 50 % напряжения, приходящегося на исправный изолятор.

В большинстве случаев при замене дефектных изоляторов гирлянды на землю не опускают. Для этого применяют специальные стяжные устройства (рис. 12.2), принимаю-

Рис. 12.1. Кривые распределения напряжения по элементам гирлянды изоляторов ВЛ 110 кВ:

1 — при отсутствии дефектных изоляторов; 2 — при пятом дефектном изоляторе

Рис. 12.2. Применение стяжного устройства для замены дефектного изолятора в натяжной гирлянде:

щие на себя тяжения проводов и позволяющие расцепить гирлянду для замены дефектного изолятора. В необходимых случаях замену дефектных изоляторов производят без снятия напряжения с ВЛ. При этом.используются изолирующие тяги, подвесные лестницы, телескопические вышки с изолирующими звеньями из дельта-древесины и другие приспособления.

Для повышения надежности работы изоляторов ВЛ в зонах с загрязненной атмосферой применяются покрытия

изоляторов тонким слоем гидрофобных (водоотталкивающих) веществ, например пасты ОРГРЭС-150 или кремний-органического вазелина КВ-3. Гидрофобные вещества препятствуют образованию сплошной пленки воды на поверхности изолятора. Принимаются также специальные изоляторы с большей длиной пути утечки тока по поверхности изолятора.

12.6.ЭКСПЛУАТАЦИЯ ЛИНЕЙНОЙ АРМАТУРЫ

К линейной арматуре относятся устройства, с помощью которых гирлянды крепятся к траверсам опор, а провода — к гирляндам изоляторов. Гасители вибрации, дистанционные распорки, защитные кольца, различного рода соединительные зажимы проводов и тросов также считаются линейной арматурой. Линейная арматура подразделяется на сцепную, предназначенную для крепления гирлянд изоляторов и тросов к опорам и составления гирлянд из изоляторов; поддерживающую, применяемую для креплений проводов к гирляндам изоляторов; натяжную, служащую для крепления и удержания проводов и тросов в натянутом состоянии.

Все детали линейной арматуры изготовляются из черных металлов и оцинковываются, так как главной причиной их повреждения является коррозия. Для защиты от коррозии арматура покрывается защитной электротехнической смазкой (ЗЭС). Дефекты и изношенность арматуры в эксплуатации выявляются при осмотрах. Сцепная арматура заменяется, если площадь сечений ее ослаблена коррозией более чем на 20%. Способы замены дефектной арматурой аналогичны способам замены изоляторов.

12.7.ЭКСПЛУАТАЦИЯ И РЕМОНТ ПРОВОДОВ, ТРОСОВ И ИХ СОЕДИНИТЕЛЬНЫХ ЗАЖИМОВ

Для воздушных линий применяются неизолированные провода сталеалюминиевые> алюминиевые, из алюминиевых сплавов и др. По конструкции провода делят на многопроволочные и полые.

Грозозащитные тросы применяются для защиты ВЛ от атмосферных перенапряжений. В качестве грозозащитных тросов используются стальные канаты, стальные и стале-алюминиевые провода.

Концы проводов и тросов в пролетах линий и петлях анкерных опор соединяются при помощи соединительных зажимов. Эти соединения должны противостоять механическим нагрузкам и атмосферным воздействиям так же хоро-

Рис. 12.3. Контактные соединения проводов и тросов:

а — овальный соединительный зажим; б — соединение способом обжатия; в — соединение способом скручивания; г — прессуемый соединительный зажим для ста-леалюминиевых проводов; / — алюминиевый корпус; 2 — стальная трубка для соединения стальной части провода; I — прессуемый участок корпуса

шо, как и провода. В связи с этим контактные соединения проводов и тросов должны иметь механическую прочность ие менее 90 % временного сопротивления на разрыв целого провода (или троса). Электрическое переходное сопротивление контактного зажима доллшо быть примерно равНьш сопротивлению целого участка провода такой жеДЛИНЫ.

Соединения проводов в пролетах ВЛ выполняются при помощи соединительных зажимов, обжатием, скручиванием, опрессовкой (рис. 12.3). Болтовые зажимы для соединения проводов и тросов в пролетах не применяются.

При соединении проводов способом обжатия очищенные от грязи концы проводов смазывают смазкой ЗЭС и вводят внахлестку в соединитель. Обжатие соединителей (рис. 12.3, б) производят монтажными клещами или гидравлическим прессом, например типа МГП-12, развивающим рабочее усилие 12 т.

Соединение проводов способом скручивания овального соединительного зажима (типа СОАС или СОС) выполняют при помощи специального приспособления МИ-190, МИ-230. При этом соединитель с введенным в него проводом скручивается на 2—4, 5 оборота. Для соединения стале-алюминиевых проводов применяют соедините чи фасонного сечения (рис. 12.3, г). После соответствующей подготовки соединяемых концов провода сначала впрессовывается его стальная часть стальной трубкой, а затем алюминиевый корпус надвигается на стальную трубку и опрессовывается. Опрессование производится гидравлическим прессом.

Для защиты контактных зажимов от агрессивных сред в процессе монтажа применяется смазка ЗЭС или технический вазелин, заполняющие свободное пространство между жилами провода и зажимом.

Достаточно надежным способом соединения проводов ВЛ является термитная сварка. Сварка выполняется с применением термитных патронов при помощи специальных сварочных приспособлений, подающих провода навстречу друг другу внутри термитного патрона во время сварки. Сварка происходит благодаря сгоранию термитной массы, поджигаемой термитной спичкой.

Сварные соединения в пролетах проводов ВЛ выполняются совместно с установкой прессуемых соединительных зажимов (рис. 12.4). При таком сочетании сварное соединение создает хороший переходной электрический контакт, а прессуемый соединительный зажим воспринимает механическую нагрузку.

Соединительные зажимы не подвергаются никаким механическим испытаниям. Электрические характеристики их определяют измерением переходного сопротивления (см. § 2.7). Периодичность контроля переходного сопротивления болтовых зажимов установлена 1 раз в 6 лет. Электрические измерения соединительных зажимов, выполненных обжатием, скруткой, опрессованием и сваркой, во время эксплуатации не производятся.

Часто встречающимися в эксплуатации повреждениями проводов и тросов являются частичные обрывы проволок. Если число поврежденных или оборванных проволок не бо-

б)

Рис. 12.4. Сварные соединения проводов в пролете ВЛ:

а — в виде петли; б — с шунтом

лее четырех, их закрепляют бандажами, при большем числе устанавливают ремонтные муфты способом опрессова-ния. При значительном уменьшении площади поперечного сечения (более 34%) поврежденный участок провода или троса вырезается и заменяется новым.

При эксплуатации проводов и тросов ведется наблюдение за стрелами их провеса, которые не должны отличаться более чем на +5 % от проектных.

Для предотвращения коррозии стальных тросов их покрывают антикорозионными покрытиями.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-14; Просмотров: 841; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь