![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Однородные системы линейных уравнений
Однородная система линейных уравнений AX = 0 всегда совместна. Она имеет нетривиальные (ненулевые) решения, если r = rank A < n. Для однородных систем базисные переменные (коэффициенты при которых образуют базисный минор) выражаются через свободные переменные соотношениями вида: Тогда n - r линейно независимыми вектор-решениями будут: а любое другое решение является их линейной комбинацией. Вектор-решения В линейном пространстве Система m линейных уравнений с n неизвестными (или, линейная система ) в линейной алгебре — это система уравнений вида
Здесь x1, x2, …, xn — неизвестные, которые надо определить. a11, a12, …, amn — коэффициенты системы — иb1, b2, … bm — свободные члены — предполагаются известными. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно[1]. Система (1) называется однородной, если все её свободные члены равны нулю (b1 = b2 = … = bm = 0), иначе —неоднородной. Система (1) называется квадратной, если число m уравнений равно числу n неизвестных.
Система (1) называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет ни одного решения. Совместная система вида (1) может иметь одно или более решений. Решения c1(1), c2(1), …, cn(1) и c1(2), c2(2), …, cn(2) совместной системы вида (1) называются различными, если нарушается хотя бы одно из равенств:
Совместная система вида (1) называется определённой, если она имеет единственное решение; если же у неё есть хотя бы два различных решения, то она называется неопределённой. Если уравнений больше, чем неизвестных, она называется переопределённой. Решение систем линейных уравнений Решение матричных уравнений ~ Метод Гаусса
Способы решения систем линейных уравнений делятся на две группы: 1. точные методы, представляющие собой конечные алгоритмы для вычисления корней системы (решение систем с помощью обратной матрицы, правило Крамера, метод Гаусса и др.), 2. итерационные методы, позволяющие получить решение системы с заданной точностью путем сходящихся итерационных процессов (метод итерации, метод Зейделя и др.). Вследствие неизбежных округлений результаты даже точных методов являются приближенными. При использовании итерационных методов, сверх того, добавляется погрешность метода. Эффективное применение итерационных методов существенно зависит от удачного выбора начального приближения и быстроты сходимости процесса.
Решение матричных уравнений
Рассмотрим систему n линейных алгебраических уравнений относительно n неизвестных х1, х2, …, хn:
Рисунок 8. В соответствии с правилом умножения матриц рассмотренная система линейных уравнений может быть записана в матричном виде
где:
Матрица А, столбцами которой являются коэффициенты при соответствующих неизвестных, а строками - коэффициенты при неизвестных в соответствующем уравнении, называется матрицей системы; матрица-столбец b, элементами которой являются правые части уравнений системы, называется матрицей правой части или просто правой частью системы. Матрица-столбец х, элементы которой - искомые неизвестные, называется решением системы. Если матрица А - неособенная, то есть det A не равен 0 то система (13), или эквивалентное ей матричное уравнение (14), имеет единственное решение. В самом деле, при условии det A не равно 0 существует обратная матрица А-1. Умножая обе части уравнения (14) на матрицу А-1получим:
Формула (16) дает решение уравнения (14) и оно единственно. Системы линейных уравнений удобно решать с помощью функции lsolve. lsolve(А, b) Возвращается вектор решения x такой, что Ах = b. Аргументы: А - квадратная, не сингулярная матрица. b - вектор, имеющий столько же рядов, сколько рядов в матрице А. На Рисунке 8 показано решение системы трех линейных уравнений относительно трех неизвестных.
Метод Гаусса
Метод Гаусса, его еще называют методом Гауссовых исключений, состоит в том, что систему (13) приводят последовательным исключением неизвестных к эквивалентной системе с треугольной матрицей:
решение которой находят по рекуррентным формулам:
В матричной записи это означает, что сначала (прямой ход метода Гаусса) элементарными операциями над строками приводят расширенную матрицу системы к ступенчатому виду: а затем (обратный ход метода Гаусса) эту ступенчатую матрицу преобразуют так, чтобы в первых n столбцах получилась единичная матрица:
Последний, (n + 1) столбец этой матрицы содержит решение системы (13). В Mathcad прямой и обратный ходы метода Гаусса выполняет функция rref(A). На Рисунке 9 показано решение системы линейных уравнений методом Гаусса, в котором используются следующие функции: rref(A) Возвращается ступенчатая форма матрицы А. augment(A, В) Возвращается массив, сформированный расположением A и В бок о бок. Массивы A и В должны иметь одинаковое число строк. submatrix(A, ir, jr, ic, jc) Возвращается субматрица, состоящая из всех элементов с ir по jr и столбцах с ic по jc. Удостоверьтесь, что ir ic Рисунок 9.
Описание метода Для системы n линейных уравнений с n неизвестными (над произвольным полем)
(i-ый столбец матрицы системы заменяется столбцом свободных членов).
В этой форме формула Крамера справедлива без предположения, что Δ отлично от нуля, не нужно даже, чтобы коэффициенты системы были бы элементами целостного кольца(определитель системы может быть даже делителем нуля в кольце коэффициентов). Можно также считать, что либо наборы b1, b2,..., bn и x1, x2,..., xn, либо набор c1, c2,..., cn состоят не из элементов кольца коэффициентов системы, а какого-нибудь модуля над этим кольцом. В этом виде формула Крамера используется, например, при доказательстве формулы дляопределителя Грама и Леммы Накаямы.
36)ус-е определенности, неопределенности
Здесь x1, x2, …, xn — неизвестные, которые надо определить. a11, a12, …, amn — коэффициенты системы — и b1, b2, … bm — свободные члены — предполагаются известными. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно[1]. Система (1) называется однородной, если все её свободные члены равны нулю (b1 = b2 = … = bm = 0), иначе — неоднородной. Система (1) называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет ни одного решения. Совместная система вида (1) может иметь одно или более решений. Решения c1(1), c2(1), …, cn(1) и c1(2), c2(2), …, cn(2) совместной системы вида (1) называются различными, если нарушается хотя бы одно из равенств:
Совместная система вида (1) называется определённой, если она имеет единственное решение; если же у неё есть хотя бы два различных решения, то она называется неопределённой
Пусть исходная система выглядит следующим образом
Матрица A называется основной матрицей системы, b — столбцом свободных членов.
При этом будем считать, что базисный минор (ненулевой минор максимального порядка) основной матрицы находится в верхнем левом углу, то есть в него входят только коэффициенты при переменных Тогда переменные Если хотя бы одно число Пусть Перенесём свободные переменные за знаки равенств и поделим каждое из уравнений системы на свой коэффициент при самом левом
Если свободным переменным системы (2) придавать все возможные значения и решать новую систему относительно главных неизвестных снизу вверх (то есть от нижнего уравнения к верхнему), то мы получим все решения этой СЛАУ. Так как эта система получена путём элементарных преобразований над исходной системой (1), то по теореме об эквивалентности при элементарных преобразованиях системы (1) и (2) эквивалентны, то есть множества их решений совпадают.
[править]Условие совместности Упомянутое выше условие Напомним, что рангом совместной системы называется ранг её основной матрицы (либо расширенной, так как они равны).
Алгоритм Описание Алгоритм решения СЛАУ методом Гаусса подразделяется на два этапа. § На первом этапе осуществляется так называемый прямой ход, когда путём элементарных преобразований над строками систему приводят к ступенчатой или треугольной форме, либо устанавливают, что система несовместна. А именно, среди элементов первого столбца матрицы выбирают ненулевой, перемещают его на крайнее верхнее положение перестановкой строк и вычитают получившуюся после перестановки первую строку из остальных строк, домножив её на величину, равную отношению первого элемента каждой из этих строк к первому элементу первой строки, обнуляя тем самым столбец под ним. После того, как указанные преобразования были совершены, первую строку и первый столбец мысленно вычёркивают и продолжают пока не останется матрица нулевого размера. Если на какой-то из итераций среди элементов первого столбца не нашёлся ненулевой, то переходят к следующему столбцу и проделывают аналогичную операцию. § На втором этапе осуществляется так называемый обратный ход, суть которого заключается в том, чтобы выразить все получившиеся базисные переменные через небазисные и построить фундаментальную систему решений, либо, если все переменные являются базисными, то выразить в численном виде единственное решение системы линейных уравнений. Эта процедура начинается с последнего уравнения, из которого выражают соответствующую базисную переменную (а она там всего одна) и подставляют в предыдущие уравнения, и так далее, поднимаясь по «ступенькам» наверх. Каждой строчке соответствует ровно одна базисная переменная, поэтому на каждом шаге, кроме последнего (самого верхнего), ситуация в точности повторяет случай последней строки. Метод Гаусса требует порядка O(n3) действий. Этот метод опирается на:
38) Теорема Кронекера-Капелли. Популярное:
|
Последнее изменение этой страницы: 2016-08-31; Просмотров: 1071; Нарушение авторского права страницы