Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Коническая и цилиндрическая поверхности



К коническим относятся поверхности, образованные перемещением прямолинейной образующей l по криволинейной направляющей т. Особенностью образования конической поверхности является то, что

Рис. 95

Рис. 96

при этом одна точка образующей всегда неподвижна. Эта точка является вершиной конической поверхности (рис. 95, а). Определитель конической поверхности включает вершину S и направляющую т, при этом l'~S; l'^ т.

К цилиндрическим относятся поверхности, образованные прямой образующей /, перемещающейся по криволинейной направляющей т параллельно заданному направлению S (рис. 95, б). Цилиндрическую поверхность можно рассматривать как частный случай конической поверхности с бесконечно удаленной вершиной S.

Определитель цилиндрической поверхности состоит из направляющей т и направления S, образующих l, при этом l' || S; l' ^ т.

Если образующие цилиндрической поверхности перпендикулярны плоскости проекций, то такую поверхность называют проецирующей. На рис. 95, в показана горизонтально проецирующая цилиндрическая поверхность.

На цилиндрической и конической поверхностях заданные точки строят с помощью образующих, проходящих через них. Линии на поверхностях, например линия а на рис. 95, в или горизонтали h на рис. 95, а, б, строятся с помощью отдельных точек, принадлежащих этим линиям.

 

Поверхности вращения

К поверхностям вращения относятся поверхности, образующиеся вращением линии l вокруг прямой i, представляющей собой ось вращения. Они могут быть линейчатыми, например конус или цилиндр вращения, и нелинейчатыми или криволинейными, например сфера. Определитель поверхности вращения включает образующую l и ось i.

Каждая точка образующей при вращении описывает окружность, плоскость которой перпендикулярна оси вращения. Такие окружности поверхности вращения называются параллелями. Наибольшую из параллелей называют экватором. Экватор.определяет горизонтальный очерк поверхности, если i _|_ П1. В этом случае параллелями являются горизонтали hэтой поверхности.

Кривые поверхности вращения, образующиеся в результате пересечения поверхности плоскостями, проходящими через ось вращения, называются меридианами. Все меридианы одной поверхности конгруэнтны. Фронтальный меридиан называют главным меридианом; он определяет фронтальный очерк поверхности вращения. Профильный меридиан определяет профильный очерк поверхности вращения.

Строить точку на криволинейных поверхностях вращения удобнее всего с помощью параллелей поверхности. На рис. 103 точка М построена на параллели h4.

Поверхности вращения нашли самое широкое применение в технике. Они ограничивают поверхности большинства машиностроительных деталей.

Коническая поверхность вращения образуется вращением прямой i вокруг пересекающейся с ней прямой — оси i (рис. 104, а). Точка М на поверхности построена с помощью образующей l и параллели h. Эту поверхность называют еще конусом вращения или прямым круговым конусом.

Цилиндрическая поверхность вращения образуется вращением прямой l вокруг параллельной ей оси i (рис. 104, б). Эту поверхность называют еще цилиндром или прямым круговым цилиндром.

Сфера, образуется вращением окружности вокруг ее диаметра (рис. 104, в). Точка A на поверхности сферы принадлежит главному

Рис. 103

Рис. 104

меридиану f, точка В — экватору h, а точка М построена на вспомогательной параллели h'.

Тор образуется вращением окружности или ее дуги вокруг оси, лежащей в плоскости окружности. Если ось расположена в пределах образующейся окружности, то такой тор называется закрытым (рис. 105, а). Если ось вращения находится вне окружности, то такой тор называется открытым (рис. 105, б). Открытый тор называется еще кольцом.

Поверхности вращения могут быть образованы и другими кривыми второго порядка. Эллипсоид вращения (рис. 106, а) образуется вращением эллипса вокруг одной из его осей; параболоид вращения (рис. 106, б) — вращением параболы вокруг ее оси; гиперболоид вращения однополостный (рис. 106, в) образуется вращением гиперболы вокруг мнимой оси, а двуполостный (рис. 106, г) — вращением гиперболы вокруг действительной оси.

В общем случае поверхности изображаются не ограниченными в направлении распространения образующих линий (см. рис. 97, 98). Для решения конкретных задач и получения геометрических фигур ограничиваются плоскостями обреза. Например, чтобы получить круговой цилиндр, необходимо ограничить участок цилиндрической поверхности плоскостями обреза (см. рис. 104, б). В результате получим его верхнее и нижнее основания. Если плоскости обреза перпендикулярны оси вращения, цилиндр будет прямым, если нет — цилиндр будет наклонным.

Рис. 105

Рис. 106

Чтобы получить круговой конус (см. рис. 104, а), необходимо выполнить обрез по вершине и за пределами ее. Если плоскость обреза основания цилиндра будет перпендикулярна оси вращения — конус будет прямой, если нет — наклонный. Если обе плоскости обреза не проходят через вершину — конус получим усеченным.

С помощью плоскости обреза можно получить призму и пирамиду. Например, шестигранная пирамида будет прямой, если все ее ребра имеют одинаковый наклон к плоскости обреза. В других случаях она будет наклонной. Если она выполнена с помощью плоскостей обреза и ни одна из них не проходит через вершину — пирамида усеченная.

Призму (см. рис. 101) можно получить, ограничив участок призматической поверхности двумя плоскостями обреза. Если плоскость обреза перпендикулярна ребрам, например восьмигранной призмы, она прямая, если не перпендикулярна — наклонная.

Выбирая соответствующее положение плоскостей обреза, можно получать различные формы геометрических фигур в зависимости от условий решаемой задачи.

 

Вопрос 22

Параболо́ ид ― тип поверхности второго порядка. Параболоид может быть охарактеризован как незамкнутая нецентральная (то есть не имеющая центра симметрии) поверхность второго порядка.

Канонические уравнения параболоида в декартовых координатах:

2z=x2/p+y2/q

Если p и q одного знака, то параболоид называется эллиптическим.

если разного знака, то параболоид называется гиперболическим.

если один из коэффициентов равен нулю, то параболоид называется параболическим цилиндром.

 

Эллиптический параболойд

2z=x2/p+y2/q

 


 

Эллиптический параболойд если p=q

2z=x2/p+y2/q

 


Гиперболический параболойд

2z=x2/p-y2/q

 

 


Параболический цилиндр 2z=x2/p(или 2z=y2/q)

Вопрос23

Вещественное линейное пространство называется Эвклидовым, если в нем определена операция скалярного умножения: любым двум векторам x и y сопоставлено вещественное число ( обозначаемое (x, y) ) , и это соответственно удовлетворяет следующим условиям, каковы бы ни были векторы x, y и z и число C:

1.(x, y)=(x, y)

2. ( x+y, z)=(x, z)+(y, z)

3. (Cx, y)= C( x, y)

4. (x, x)> 0, если x≠ 0

 

Простейшие следствия из вышеуказанных аксиом:

1. (x, Cy)=(Cy, x)=C(y, x) следовательно всегда (X, Cy)=C(x, y)

2. (x, y+z)=(x, y)+ (x, z)

3. ( )= (xi, y)

( )= (x, yk)

4.(x, 0)=0

Пусть есть базис En e1, …, en

И вектор X= , выражается через векторы базиса X=x1*e1+…+xn*en

И есть новый базис e1/, …., en/,

Тогда: e1/ =S11e1+…+Sn1en

…………………………………

en/ =S1ne1+…..+Snnen

А вектор X в новом базисе X/= X/=x1/*e1/+…+xn/*en/

X=SX/, X/=S-1X, где S матрица перехода

 

S= , где каждый k-й столбец это координаты k-го базисного вектора

Неравенство Коши-Буняковского

Для любых двух элементов х и у произвольного евклидова пространства справедливо неравенство

(x, y)^2 ≤ (x, x)(y, y),

называемое неравенством Коши-Буняковского.

Доказательство. Для любого вещественного числа λ, в силу аксиомы 4° скалярного произведения, справедливо неравенство (λ х — у, λ х — у) > 0. В силу аксиом 1°-3°, последнее неравенство можно переписать в виде

λ ^2(x, x) - 2λ (x, y) + (y, y) ≤ 0

Необходимым и достаточным условием неотрицательности последнего квадратного трехчлена является неположительность его дискриминанта, т. е. неравенство (в случае (х, х) = 0 квадратный трехчлен вырождается в линейную функцию, но в этом случае элемент х является нулевым, так что (х, у) = 0 и неравенство (4.7) также справедливо)

(x, y)^2 - (x, x)(y, y) ≤ 0.

Неравенство треугольника(следствие из неравенства Коши-Буняковского)

Для любых векторов и

Доказательство

Извлекаем корень получаем

Вопрос24


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-14; Просмотров: 1689; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.024 с.)
Главная | Случайная страница | Обратная связь