Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Ствол головного мозга – функции и рефлексы



Ствол мозга – это часть головного мозга, включающая в себя продолговатый мозг, варолиев мост и средний мозг. Здесь находятся ядра черепно-мозговых нервов, труктуры ретикулярной формации, ядерные образования, имеющие отношение к осуществлению широкого круга рефлекторных реакций соматического и вегетативного обеспечения высших функций центральной нервной системы. Кроме того, через ствол проходят восходящие и нисходящие пути, связывающие его со спинным мозгом и корой больших полушарий. Ствол мозга теряет свойство метамерности, характеризующее спинной мозг, и представляет собой систему специализированных ядерных образований. К стволовым функциям физиологи относят сложные цепные рефлексы, регуляцию тонуса и позы, влияние ретикулярной формации.

Функции ствола мозга, которые реализуются ядрами черепных нервов

В стволе мозга находятся ядра III – XII пар черепных нервов, через которые осуществляются чувствительные (сенсорные), двигательные (соматические) и вегетатиыне (парасимпатические) функции.

Ядра глазодвигательного нерва (III пара) расположены в среднем мозге.

Двигательное ядро сокращает верхнюю, нижнюю, внутреннюю прямые, нижнюю косую мышцы глаза и мышцу, поднимающую верхнее веко, участвуя в глазодвигательных рефлексах.

Добавочное (парасимпатическое) ядро, иннервируя сфинктер зрачка и ресничную мышцу, осуществляет рефлексы сужения и аккомодации глаза.

Ядро блокового нерва (IV пара) находится в среднем мозге. Иннервируя верхнюю косую мышцу, оно осуществляет поворот глазного яблока вниз и кнаружи.

Тройничный нерв (V пара) имеет двигательное и чувствительные ядра.

Двигательное ядро расположено в мосту, иннервирует жевательную мускулатуру и вызывает движение нижней челюсти вверх, вниз, в стороны и вперед, а также напрягает мягкое небо и барабанную перепонку.Чувствительные ядра (средне-мозговое, мостовое, спинальное) получают от кожи, слизистых оболочек, органов лица и головы тактильную, температурную, висцеральную, проприоцептивную и болевую импульсацию. Кроме этого они входят в проводниковый отдел соответствующих анализаторов и участвуют в различных рефлексах, например, жевательном, глотательном, чихательномЯдро отводящего нерва (VI пара) расположено в мосту. Вызывает поворот глаза наружу, сокращая наружную прямую мышцу глаза.Ядра лицевого нерва (VII пара) находятся в мосту.Двигательное ядро вызывает сокращение мимической и вспомогательной мускулатуры, регулирует передачу звуковых колебаний в среднем ухе в результате сокращения стременной мышцы.Чувствительное ядро одиночного пути, иннервируя вкусовые луковицы передних 2/3 языка, анализирует вкусовую чувствительность, участвует в моторных и секреторных пищеварительных рефлексах.

Верхнее слюноотделительное (парасимпатическое) ядро стимулирует выделение секретов подъязычной, подчелюстных слюнных желез и слезной железы.Чувствительные ядра преддверно-улиткового нерва (VIII пара) расположены в продолговатом мозге.

Вестибулярные ядра, иннервируя рецепторы вестибулярного аппарата, участвуют в регуляции позы и равновесия тела (статические и статокинетические рефлексы), в вестибулоглазных и вестибуловегетативных рефлексах, входят в проводниковый отдел вестибулярного анализатора.Улитковые ядра, иннервирующие слуховые рецепторы, участвуют в слуховом ориентировочном рефлексе, входят в состав проводникового отдела слухового анализатора.

Ядра языкоглоточного нерва (IX пара) расположены в продолговатом мозге.

Двойное (двигательное) ядро вызывает поднимание глотки и гортани, опускание мягкого неба и надгортанника в глотательном рефлексе.

Чувствительное ядро одиночного пути получает вкусовую, тактильную, температурную, болевую и интероцептивную чувствительность от слизистой оболочки глотки, задней трети языка, барабанной полости и каротидного тельца, входит в состав соответствующих анализаторов, участвует в рефлексах жевания, глотания, в секреторных и моторных пищеварительных рефлексах, а также в сосудистых и сердеяных рефлексах (из каритидного тельца).

Нижнее слюноотделительное (парасимпатическое) ядро стимулирует секрецию околоушной слюнной железыЯдра блуждающего нерва (X пара) расположены в продолговатом мозге. Двойное (двигательное) ядро, сокращая мышцы неба, глотки, верхней части пищевода и гортани, участвует в рефлексах глотания, рвоты, чихания, кашля, в формировании голоса.Чувствительное ядро одиночного пути, иннервируя слизистую оболочку неба, корня языка, дыхательных путей, аортальное тельце, органы шеи, грудной и брюшной полости, участвует в качестве афферентного звена в глотательном, жевательном, дыхательных, висцеральных рефлексах. Оно входит в проводниковый отдел интероцептивного, вкусового, тактильного, температурного и болевого анализаторов. Заднее (парасимпатическое) ядро, иннервируя сердце, гладкую мускулатуру и железы шеи, грудной и брюшной полостей, участвует в сердечных, легочных, бронхиальных и пищеварительных рефлексах.Двигательное ядро добавочного нерва (XI пара) расположено в продолговатом и спинном мозге и посылает импульсы к грудино-ключично-сосцевидной и трапециевидной мышцам, что ведет к их сокращению и вызывает наклон головы набок с поворотом лица в противоположную сторону, поднимание плечевого пояса вверх, сведение лопаток к позвоночнику.Двигательное ядро подъязычного нерва (XII пара) находится в продолговатом мозге. Иннервирует мышцы языка, вызывая его движение в рефлексах жевания, сосания, глотания и осуществлении речи.Таким образом, с участием ядер черепных нервов реализуются сенсорная и рефлекторная (соматическая и вегетативная) функции ствола мозга.

Сложные рефлексы ствола мозг. С участием ствола мозга осуществляются сложные соматические рефлексы, в каждом из которых задействованы ядра нескольких черепных нервов.1. Глазодвигательные рефлексы имеют центры, функционально объединяющие чувствительные ядра тройничного, преддверно-улиткового нервов, бугорки четверохолмия, двигательные ядра глазодвигательного, блокового и отводящего нервов. Координация их деятельности осуществляется ретикулярной формацией ствола мозга, а также мозжечком и корой больших полушарий. В результате этих рефлексов происходит содружественные движения глаз в различных направлениях.2. Рефлекторный акт жевания обеспечивается мышцами, вызывающими движения нижней челюсти и удерживающими пищу между зубными рядами. Афферентнаяимпульсация возникает с различных рецепторов слизистой оболочки рта и проприорецепторов аппарата жевания и распространяется в основном по сенсорным волокнам тройничного нерва. Центр жевания (центральный генератор ритма жевания) находится в ретикулярной формации продолговатого мозга и моста и вызывает ритмическое возбуждение мотонейронов мышц, поднимающих и опускающих нижнюю челюсть. Генератор ритма жевания может быть запущен и от жевательной области лобной коры, что обеспечивает произвольный контроль жевания. Эфферентное влияние центра жевания осуществляется через двигательные ядра V, VII и XII нервов.3. Рефлекторный акт глотания обеспечивает поступление пищи из ротовой полости в желудок. При передвижении пищевого комка из полости рта в пищевод происходит последовательное возбуждение рецепторов корня языка, мягкого неба, глотки и пищевода. Импульсация по чувствительным волокнам тройничного, языкоглоточного и блуждающего нервов поступает в центр глотания, который расположен в продолговатом мозге и мосте. Этот центр функционально объединяет нейроны примерно двух десятков ядер ствола, шейных и грудных сегментов спинного мозга. В результате этого обеспечивается строго координированная последовательность сокращения мышц, которые участвуют в акте глотания: мышц мягкого неба, глотки, гортани и надгортанника, пищевода. Центр глотания функционально связан с центром дыхания, которое прекращается в течение каждого глотательного акта.4. Рвотный рефлекс является защитной реакцией, возникающей при раздражении рецепторов корня языка, глотки, желудка, кишечника, брюшины, вестибулярного аппарата. Афферентнаяимпульсация по волокнам языкоглоточного, блуждающего или преддверно-улиткового нервов поступает в рвотный центр, расположенный в продолговатом мозге. Рвоту можно вызвать и непосредственным раздражением рвотного центра местным патологическим процессом или химическими веществами. Эфферентные импульсы из рвотного центра поступают по блуждающему нерву к пищеводу, желудку, кишечнику и через спинальные моторные центры к диафрагме и мышцам брюшной стенки, сокращение которых приводит к перемещению содержимого желудка.5. Рефлекс кашля является защитным рефлексом, возникающим при раздражении рецепторов гортани, трахеи и бронхов. Импульсация по чувствительным волокнам блуждающего нерва возбуждает кашлевой центр продолговатого мозга, имеющий эфферентный выход на спинальные моторные центры дыхательных мышц. Центр кашля запускает жестко запрограммированную последовательность реакций, в которой можно выделить три фазы: 1) глубокий вдох; 2) сокращение мышц выдоха на фоне закрытой голосовой щели и сужения бронхов, что приводит к резкому повышению давления в легких; 3) активный выдох на фоне мгновенного раскрытия голосовой щели, создающий мощный воздушный поток, направляемый за счет напряжения мягкого неба через рот.6. Рефлекс чихания возникает при раздражении рецепторов преимущественно верхнечелюстной и частично глазничной ветви тройничного нерва в слизистой оболочке полости носа, особенно средней носовой раковины и перегородки. Центр чихания, расположенный в продолговатом мозге, организует те же центральные системы, что и при кашле, но поток воздуха при форсированном выдохе на фоне быстрого открывания голосовой щели и опускания мягкого неба направляется преимущественно через нос.

 

90 Железы внутренней секреции. Регуляция функционирования желез внутренней секреции. Железами внутренней секреции, или эндокринными органами, называются железы, не имеющие выводных протоков. Они вырабатывают особые вещества - гормоны, поступающие непосредственно в кровь. Гормоны - органические вещества различной химической природы: пептидные и белковые (к белковым гормонам относятся инсулин, соматотропин, пролактин и др), производные аминокислот (адреналин, норадреналин, тироксин, трииодтиронин), стероидные (гормоны половых желез и коры надпочечников). Гормоны обладают высокой биологической активностью (поэтому вырабатываются в чрезвычайно малых дозах), специфичностью действия, дистантным воздействием, т. е. влияют на органы и ткани, расположенные вдали от места образования гормонов. Поступая в кровь, они разносятся по всему организму и осуществляют гуморальную регуляцию функций органов и тканей, изменяя их деятельность, возбуждая или тормозя их работу. Действие гормонов основано на стимуляции или угнетении каталитической функции некоторых ферментов, а также воздействии на их биосинтез путем активации или угнетения соответствующих генов. Деятельность желез внутренней секреции играет основную роль в регуляции длительно протекающих процессов: обмена веществ, роста, умственного, физического и полового развития, приспособления организма к меняющимся условиям внешней и внутренней среды, обеспечении постоянства важнейших физиологических показателей (гомеостаза), а также в реакциях организма на стресс. При нарушении деятельности желез внутренней секреции возникают заболевания, называемые эндокринными. Нарушения могут быть связаны либо с усиленной (по сравнению с нормой) деятельностью железы - гиперфункцией, при которой образуется и выделяется в кровь увеличенное количество гормона, либо с пониженной деятельностью железы - гипофункцией, сопровождаемой обратным результатом.

Регуляция деятельности желез внутренней секреции осуществляется нервными и гуморальными факторами. Нейроэндокринные зоны гипоталамуса, эпифиз, мозговое вещество надпочечников и другие участки хромаффинной ткани регулируются непосредственно нервными механизмами. В большинстве случаев нервные волокна, подходящие к железам внутренней секреции, регулируют не секреторные клетки, а тонус кровеносных сосудов, от которых зависит кровоснабжение и функциональная активность желез. Основную роль в физиологических механизмах регуляции играют нейрогормональные и гормональные механизмы, а также прямые влияния на эндокринные железы тех веществ, концентрацию которых регулирует данный гормон.

Регулирующее влияние ЦНС на деятельность эндокринных желез осуществляется через гипоталамус. Гипоталамус получает по афферентным путям мозга сигналы из внешней и внутренней среды. Нейросекреторные клетки гипоталамуса трансформируют афферентные нервные стимулы в гуморальные факторы, продуцируя рилизинг-гормоны. Рилизинг-гормоны избирательно регулируют функции клеток аденогипофиза. Среди рилизинг-гормонов различают либерины - стимуляторы синтеза и выделения гормонов аденогипофиза и статины - ингибиторы секреции. Они носят название соответствующих тропных гормонов: тиреолиберин, кортиколиберин, соматолиберин и т.д. В свою очередь, тропные гормоны аденогипофиза регулируют активность ряда других периферических желез внутренней секреции (кора надпочечников, щитовидная железа, гонады). Это так называемые прямые нисходящие регулирующие связи.

Кроме них внутри указанных систем существуют и обратные восходящие саморегулирующие связи. Обратные связи могут исходить как от периферической железы, так и от гипофиза. По направленности физиологического действия обратные связи могут быть отрицательными и положительными. Отрицательные связи самоограничивают работу системы. Положительные связи самозапускают ее. Так, низкие концентрации тироксина через кровь усиливают выработку тиреотропного гормона гипофизом и тиреолиберина - гипоталамусом. Гипоталамус значительно более чувствителен, чем гипофиз к гормональным сигналам, поступающим от периферических эндокринных желез. Благодаря механизму обратной связи устанавливается равновесие в синтезе гормонов, реагирующее на снижение или повышение концентрации гормонов желез внутренней секреции.

Некоторые железы внутренней секреции, такие как поджелудочная железа, околощитовидные железы, не находятся под влиянием гормонов гипофиза. Деятельность этих желез зависит от концентрации тех веществ, уровень которых регулируется этими гормонами. Так, уровень паратгормона околощитовидных желез и кальцитонина щитовидной железы определяется концентрацией ионов кальция в крови. Глюкоза регулирует продукцию инсулина и глюкагона поджелудочной железой. Кроме того, функционирование этих желез осуществляется за счет влияния уровня гормонов-антагонистов.

91 Функционирование ретикулярной формации ствола мозга.Ретикулярная формация ствола мозга

Ретикулярная формация (formatioreticularis; РФ) мозга пред­ставлена сетью нейронов с многочисленными диффузными связями между собой и практически со всеми структурами центральной нервной системы. РФ располагается в толще серого вещества продолговатого, среднего, промежуточного мозга и изначально свя­зана с РФ спинного мозга. В связи с этим целесообразно ее рассмотреть как единую систему. Сетевые связи нейронов РФ между собой позволили Дейтерсу назвать ее ретикулярной фор­мацией мозга.

РФ имеет прямые и обратные связи с корой большого мозга, базальными ганглиями, промежуточным мозгом, мозжечком, сред­ним, продолговатым и спинным мозгом.

Основной функцией РФ является регуляция уровня активности коры большого мозга, мозжечка, таламуса, спинного мозга.

С одной стороны, генерализованный характер влияния РФ на многие структуры мозга дал основание считать ее неспецифической системой. Однако исследования с раздражением РФ ствола показали, что она может избирательно оказывать активирующее или тормо­зящее влияние на разные формы поведения, на сенсорные, моторные, висцеральные системы мозга. Сетевое строение обеспечивает высо­кую надежность функционирования РФ, устойчивость к поврежда­ющим воздействиям, так как локальные повреждения всегда ком­пенсируются за счет сохранившихся элементов сети. С другой сто­роны, высокая надежность функционирования РФ обеспечивается тем, что раздражение любой из ее частей отражается на активности всей РФ данной структуры за счет диффузности связей.

Большинство нейронов РФ имеет длинные дендриты и короткий аксон. Существуют гигантские нейроны с длинным аксоном, обра­зующие пути из РФ в другие области мозга, например в нисходящем направлении, ретикулоспинальный и руброспинальный. Аксоны ней­ронов РФ образуют большое число коллатералей и синапсов, которые оканчиваются на нейронах различных отделов мозга. Аксоны нейронов РФ, идущие в кору большого мозга, заканчиваются здесь на дендритах I и II слоев.

Активность нейронов РФ различна и в принципе сходна с ак­тивностью нейронов других структур мозга, но среди нейронов РФ имеются такие, которые обладают устойчивой ритмической актив­ностью, не зависящей от приходящих сигналов.

В то же время в РФ среднего мозга и моста имеются нейроны, которые в покое «молчат», т. е. не генерируют импульсы, но воз­буждаются при стимуляции зрительных или слуховых рецепторов. Это так называемые специфические нейроны, обеспечивающие бы­струю реакцию на внезапные, неопознанные сигналы. Значительное число нейронов РФ являются полисенсорными. В РФ продолговатого, среднего мозга и моста конвергируют сигналы различной сенсорности. На нейроны моста приходят сигналы преимущественно от соматосенсорных систем. Сигналы от зритель­ной и слуховой сенсорных систем в основном приходят на нейроны РФ среднего мозга.

РФ контролирует передачу сенсорной информации, идущей через ядра таламуса, за счет того, что при интенсивном внешнем раздра­жении нейроны неспецифических ядер таламуса затормаживаются, тем самым снимается их тормозящее влияние с релейных ядер того же таламуса и облегчается передача сенсорной информации в кору большого мозга.В РФ моста, продолговатого, среднего мозга имеются нейроны, которые реагируют на болевые раздражения, идущие от мышц или внутренних органов, что создает общее диффузное диском­фортное, не всегда четко локализуемое, болевое ощущение «тупой боли».

Повторение любого вида стимуляции приводит к снижению импульсной активности нейронов РФ, т. е. процессы адаптации (привыкания) присущи и нейронам РФ ствола мозга. РФ ствола мозга имеет прямое отношение к регуляции мышечного тонуса, поскольку на РФ ствола мозга поступают сигналы от зри­тельного и вестибулярного анализаторов и мозжечка. От РФ к мотонейронам спинного мозга и ядер черепных нервов поступают сигналы, организующие положение головы, туловища и т. д.Ретикулярные пути, облегчающие активность моторных систем спинного мозга, берут начало от всех отделов РФ. Пути, идущие от моста, тормозят активность мотонейронов спинного мозга, иннервирующих мышцы-сгибатели, и активируют мотонейроны мышц-разгибателей. Пути, идущие от РФ продолговатого мозга, вызывают противоположные эффекты. Раздражение РФ приводит к тремору, повышению тонуса мышц. После прекращения раздражения вызван­ный им эффект сохраняется длительно, видимо, за счет циркуляции возбуждения в сети нейронов.РФ ствола мозга участвует в передаче информации от коры большого мозга, спинного мозга к мозжечку и, наоборот, от мозжечка к этим же системам. Функция данных связей заключается в под­готовке и реализации моторики, связанной с привыканием, ориентировочными реакциями, болевыми реакциями, организацией ходь­бы, движениями глаз.

Регуляция вегетативной деятельности организма РФ описана в разделе 4.3, здесь же заметим, что наиболее четко эта регуляция проявляется в функционировании дыхательного и сердечно-сосуди­стых центров. В регуляции вегетативных функций большое значение имеют так называемые стартовые нейроны РФ. Они дают начало циркуляции возбуждения внутри группы нейронов, обеспечивая то­нус регулируемых вегетативных систем.

Влияния РФ можно разделить в целом на нисходящие и восхо­дящие. В свою очередь каждое из этих влияний имеет тормозное и возбуждающее действие.

Восходящие влияния РФ на кору большого мозга повы­шают ее тонус, регулируют возбудимость ее нейронов, не изменяя специфику ответов на адекватные раздражения. РФ влияет на фун­кциональное состояние всех сенсорных областей мозга, следователь­но, она имеет значение в интеграции сенсорной информации от разных анализаторов.РФ имеет прямое отношение к регуляции цикла бодрствова­ние—сон. Стимуляция одних структур РФ приводит к развитию сна, стимуляция других вызывает пробуждение. Г. Мэгун и Д. Моруцци выдвинули концепцию, согласно которой все виды сигналов, идущих от периферических рецепторов, достигают по коллатералям РФ продолговатого мозга и моста, где переключаются на нейроны, дающие восходящие пути в таламус и затем в кору большого мозга.

Возбуждение РФ продолговатого мозга или моста вызывает син­хронизацию активности коры большого мозга, появление медленных ритмов в ее электрических показателях, сонное торможение.Возбуждение РФ среднего мозга вызывает противоположный эф­фект пробуждения: десинхронизацию электрической активности ко­ры, появление быстрых низкоамплитудных β -подобных ритмов в электроэнцефалограмме.Г. Бремер (1935) показал, что если перерезать мозг между пе­редними и задними буграми четверохолмия, то животное перестает реагировать на все виды сигналов; если же перерезку произвести между продолговатым и средним мозгом (при этом РФ сохраняет связь с передним мозгом), то животное реагирует на свет, звук и другие сигналы. Следовательно, поддержание активного анализиру­ющего состояния мозга возможно при сохранении связи с передним мозгом.Реакция активации коры большого мозга наблюдается при раз­дражении РФ продолговатого, среднего, промежуточного мозга. В то же время раздражение некоторых ядер таламуса приводит к воз­никновению ограниченных локальных участков возбуждения, а не к общему ее возбуждению, как это бывает при раздражении других отделов РФ.РФ ствола мозга может оказывать не только возбуждающее, но и тормозное влияние на активность коры мозга.

Нисходящие влияния РФ ствола мозга на регуляторную деятельность спинного мозга были установлены еще И. М. Сечено­вым (1862). Им было показано, что при раздражении среднего мозга кристалликами соли у лягушки рефлексы отдергивания лапки воз­никают медленно, требуют более сильного раздражения или не появляются вообще, т. е. тормозятся.Г. Мэгун (1945—1950), нанося локальные раздражения на РФ продолговатого мозга, нашел, что при раздражении одних точек тормозятся, становятся вялыми рефлексы сгибания передней лапы, коленный, роговичный. При раздражении РФ в других точках про­долговатого мозга эти же рефлексы вызывались легче, были сильнее, т. е. их реализация облегчалась. По мнению Мэгуна, тормозные влияния на рефлексы спинного мозга может оказывать только РФ продолговатого мозга, а облегчающие влияния регулируются всей РФ ствола и спинного мозга.

 

92 Структурно-функциональная организация лимбической системы.Лимбическая системаЛимбическая система имеет вид кольца и расположена на границе новой коры и ствола мозга. В функциональном отношении под лимбической системой понимают объединение различных структур конечного, промежуточного и среднего мозга, обеспечивающее эмоционально-мотивационные компоненты поведения и интеграцию висцеральных функций организма. В эволюционном аспекте лимбическая система сформировалась в процессе усложнения форм поведения организма, перехода от жестких, генетически запрограммированных форм поведения к пластичным, основанным на обучении и памяти.

Структурно-функциональная организация лимбической системыВ более узком понимании в лимбическую систему включают образования древней коры (обонятельная луковица и бугорок), старой коры (гиппокамп, зубчатая и поясная извилины), подкорковые ядра (миндалина и ядра перегородки). Этот комплекс рассматривается по отношению к гипоталамусу и ретикулярной формации ствола как более высокий уровень интеграции вегетативных функций.

Афферентные входы в лимбическую систему осуществляются от различных областей головного мозга, через гипоталамус от РФ ствола, обонятельных рецепторов по волокнам обонятельного нерва. Главным источником возбуждения лимбической системы является ретикулярная формация ствола головного мозга.

Эфферентные выходы из лимбической системы осуществляются: 1) через гипоталамус на нижележащие вегетативные и соматические центры ствола и спинного мозга, и 2) в новую кору (преимущественно ассоциативную). Характерным свойством лимбической системы является наличие выраженных кольцевых нейронных связей. Эти связи дают возможность реверберации возбуждения, которая является механизмом его пролонгирования, повышения проводимости синапсов и формирования памяти. Реверберация возбуждения создает условия для сохранения единого функционального состояния структур замкнутого круга и передачу этого состояния другим структурам мозга. Важнейшим циклическим образованием лимбической системы является круг Пейпеца, идущий от гиппокампа через свод к мамиллярным телам, затем к передним ядрам таламуса, далее в поясную извилину и через парагиппокампальную извилину обратно к гиппокампу. Этот круг играет большую роль в формировании эмоций, обучении и памяти. Другой лимбический круг идет от миндалины через терминальную полоску к мамиллярным телам гипоталамуса, затем к лимбической области среднего мозга и обратно к миндалинам. Этот круг имеет значение в формировании агрессивно-оборонительных, пищевых и сексуальных реакций.

Функции лимбической системы

Наиболее общая функция лимбической системы состоит в том, что она, получая информацию о внешней и внутренней среде организма, после сравнения и обработки этой информации запускает через эфферентные выходы вегетативные, соматические и поведенческие реакции, обеспечивающие приспособление организма к внешней среде и сохранение внутренней среды на определенном уровне. Эта функция осуществляется через деятельность гипоталамуса. Механизмы приспособления, которые осуществляются лимбической системой, связаны с регуляцией последней висцеральных функций.Важнейшей функцией лимбической системы является формирование эмоций. В свою очередь, эмоции являются субъективным компонентом мотиваций – состояний, запускающих и реализующих поведение, направленное на удовлетворение возникших потребностей. Через механизм эмоций лимбическая система улучшает приспособление организма к изменяющимся условиям среды. В выполнении данной функции участвуют гипоталамус, миндалина и вентральная лобная кора. Гипоталамус является структурой, ответственной преимущественно за вегетативные проявления эмоций. При стимуляции миндалины у человека возникает страх, гнев, ярость. При удалении миндалин появляется неуверенность и тревожность. Кроме этого миндалина участвует в процессе сравнения конкурирующих эмоций, выделения доминирующей эмоции, то есть другими словами миндалина влияет на выбор поведения. Поясная извилина играет роль главного интегратора различных систем мозга, формирующих эмоции, так как она имеет обширные связи, как с новой корой, так и со стволовыми центрами. Вентральная лобная кора также играет существенную роль в регуляции эмоций. При ее поражении наступает эмоциональная тупость.Функция формирования памяти и осуществление обучения связана преимущественно с кругом Пейпеца. Вместе с тем в однократном обучении большое значение имеет миндалина, благодаря ее свойству индуцировать сильные отрицательные эмоции, способствуя быстрому и прочному формированию временной связи. Гиппокамп и связанные с ним задние зоны лобной коры также ответственны за память и обучение. Эти образования осуществляют переход кратковременной памяти в долговременную. Повреждение гиппокампа ведет к нарушению усвоения новой информации, образования промежуточной и долговременной памяти.Электрофизиологической особенностью гиппокампа является то, что в ответ на сенсорное раздражение, стимуляцию ретикулярной формации и заднего гипоталамуса в гиппокампе развивается синхронизация электрической активности в виде низкочастотного θ -ритма. При этом в новой коре, напротив, возникает десинхронизация в виде высокочастотного β -ритма. Пейсмекером θ -ритма является медиальное ядро перегородки. Другой электрофизиологической особенностью гиппокампа является его уникальная способность в ответ на стимуляцию отвечать длительной посттетанической потенциацией и увеличением амплитуды постсинаптических потенциалов своих клеток-зерен. Посттетаническаяпотенциация облегчает синаптическую передачу и лежит в основе механизма формирования памяти. Ультраструктурным проявлением участия гиппокампа в образовании памяти является увеличение числа шипиков на дендритах его пирамидных нейронов, что обеспечивает усиление синаптической передачи возбуждения и торможения.

 

93 Симпатический отдел ВНС и его функции. Центральные структуры симпатического отдела вегетативной нервной системы расположены в спинном мозге.Они занимают пространство боковых рогов серого вещества от восьмого шейного сегмента до второго-третьего поясничного (спинномозговой центр Якобсона). Миелинизированные аксоны этого центра выходят в составе передних корешков спинного мозга.Периферическая часть Периферическая часть симпатического отдела состоит из двух пограничных стволов — цепочек паравертебральных ганглиев, лежащих по краям позвоночника. Ганглии в цепочке связаны между собой межузловыми ветвями (коннективами). Существуют и комиссуральные связи между симметричными ганглиями. В шейном и нижнем крестцовом отделах симпатического ствола преганглионарные нервы подходят к ганглиям не из своих сегментов спинного мозга, а из ниже- или вышележащих сегментов через коннективы ствола. В этом случае веточки проходят через ганглии, не переключаясь в них и оставаясь миелинизированными.В шейном отделе имеются три шейных узла, образовавшиеся в онтогенезе при слиянии восьми симпатических ганглиев. Два верхних шейных узла иннервируют сонную артерию, глотку, пищевод, слюнные и щитовидные железы и сердце. Нижний шейный узел, в свою очередь, сливается с верхним грудным симпатическим узлом, образуя крупный звездчатый ганглий. Звездчатый ганглий иннервирует позвоночную артерию, органы грудной полости (пищевод, трахею, вилочковую железу, аорту) и сердечную мышцу.В грудном отделе имеется 10—12 ганглиев. Постганглионарные ветви первых пяти из них направляются к плевре, сердечному, легочному и аортальному сплетениям. Узлы с 6-го по 9-й образуют большой чревный нерв, который, пройдя в брюшную полость, оканчивается в превертебральных узлах самого крупного нервного сплетения брюшной полости — чревного или солнечного сплетения. В его состав входят как симпатические, так и парасимпатические волокна. От чревного сплетения радиально отходит множество нервов, образующих вторичные сплетения (отсюда и название — солнечное сплетение). В узлах солнечного сплетения оканчиваются волокна многих внутренностных нервов. От узлов этого сплетения берут начало постганглионарные нервы, иннервирующие почти все органы брюшной полости. Последние 2—3 узла грудного отдела своими ветвями формируют малый чревный нерв, который также уходит к узлам солнечного сплетения.В брюшной части пограничного симпатического ствола имеется 4—5 поясничных узла, от которых идут ветви к брюшной части аорты, половым органам, брыжеечному ганглию, кишечнику. В тазовой части симпатического ствола лежат 4 крестцовых узла и один непарный копчиковый узел. Через тазовое сплетение они иннервируют тазовые органы.Симпатические афферентные (чувствительные) волокна от внутренних органов, несущие информацию от многочисленных интерорецепторов, идут в составе симпатических нервов и вступают в спинной мозг по его задним корешкам, как и чувствительные соматические афференты.Окончания симпатических волокон выделяют в качестве медиатора норадренилин и адреналин.Симпатический отдел вегетативной нервной системы увеличивает свою активность при необходимости мобилизации ресурсов организма. Под действием импульсов, приходящих по симпатическим нервам, увеличивается частота и сила сердечных сокращений, сужается просвет кровеносных сосудов, повышается кровяное давление, тормозится двигательная и секреторная активность пищеварительной системы.Высшим центром, согласующим работу соматических и вегетативных функций, является кора больших полушарий. В ней имеются проекции как парасимпатических, так и симпатических нервов. Чувствительные пути вегетативных органов проецируются в лимбическую и ростральные части коры (орбитальная, двигательная зоны). Эти проекции строятся на топическом принципе — рядом расположенные органы проецируются в соседние зоны коры. Парасимпатические и симпатические проекции одних и тех же органов проецируются в одни и те же или близко расположенные участки коры. Однако парасимпатические проекции в коре представлены гораздо шире, чем симпатические.Симпатическая нервная система активируется при стрессовых реакциях. Для неё характерно генерализованное влияние, при этом симпатические волокна иннервируют подавляющее большинство органов.
94 Парасимпатический отдел ВНС и его функции. Центральные структуры парасимпатического отдела вегетативной нервной системы расположены в стволе мозга(средний мозг, Варолиев мост и продолговатый мозг) и в крестцовом отделе спинного мозга. Периферические части образованыэктрамуральными и интрамуральными ганглиями и нервами.Из среднего мозга парасимпатические ветви уходят в составе глазодвигательного нерва (III пара). Затем преганглионарные волокна направляются к ресничному экстрамуральному ганглию глазницы. Постганглионарные волокна этого ганглия иннервируют гладкую мускулатуру ресничного тела и кольцевых мышц зрачка, т.е. являются двигательными.Варолиев мост покидается парасимпатическими волокнами в составе лицевого нерва (VII пара). На периферии они образуют преганглионарные веточки нескольких экстрамуральных узлов, иннервирующих железы слизистой оболочки носа и нёба, слезные железы, подчелюстную и подъязычную слюнные железы. Таким образом, парасимпатические веточки лицевого нерва являются секреторными.Из продолговатого мозга в составе языкоглоточного нерва (IX пара) уходят также секреторные парасимпатическое ветви, которые направляются к ушному экстрамуральному ганглию, иннервирующему околоушные слюнные железы и железы слизистой щек и губ.Блуждающий нерв (X пара) является самой значительной частью парасимпатического отдела вегетативной нервной системы. Его ветви направляются к сердечному, бронхиальному и чревному сплетениям, а также к интрамуральным узлам в стенках внутренних органов грудной, брюшной полостей и полости большого таза.Парасимпатические ветви крестцовой части спинного мозга берут начало в боковых рогах серого вещества второго—четвертого крестцовых сегментов и направляются к превертебральным ганглиям нижнего подчревного сплетения и интрамуральным ганглиям органов малого таза (см. рис. 19).Окончаниями парасимпатического отдела вегетативной нервной системы выделяется медиатор ацетилхолин.Парасимпатический отдел вегетативной нервной системы регулирует работу внутренних органов в условиях покоя. Его активация способствует снижению частоты и силы сердечных сокращений, снижению кровяного давления, увеличению как двигательной, так и секреторной активности пищеварительного тракта.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-14; Просмотров: 728; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.034 с.)
Главная | Случайная страница | Обратная связь