Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Количество подходов и время отдыха между подходами



Для того, что бы определить оптимальное количество повторений и отдых между ними следует разобраться, для чего вообще используется интервальный метод тренировок -метод чередования нагрузки и отдыха.

Нагрузки, повторяющиеся через определенный интервал отдыха, используются для более сильного воздействия на тренируемую функцию. В зависимости от особенностей происходящих в организме процессов можно выделить два принципа взаимодействия нагрузок в ходе одного тренировочного занятия.

В самом простом случае эффект, достигаемый в ходе каждого подхода, не зависит от предшествующей нагрузки. Время отдыха между подходами, в этом случае, строго не регламентировано, оно должно быть лишь достаточным для восстановления сил, дабы иметь возможность повторить последующий подход на требуемом уровне мощности. Общий эффект от такой тренировки является простой суммой тренировочных эффектов достигнутых в ходе отдельных подходов. Примером может служить тренировка, направленная на развитие гликолитической емкости мышц, срочная тактическая цель которой существенное исчерпание запасов гликогена в мышце, дабы спровоцировать его сверхвосстановление в период отдыха. В ходе одного подхода расходуется определенное количество гликогена, пропорциональное выполненной работе. Молочная кислота, накапливаемая в мышце в результате гликолитического способа восстановления АТФ, останавливает работу задолго до исчерпания запасов гликогена в мышце. Многократно повторяя нагрузку после отдыха, достаточного для существенного вывода молочной кислоты из мышцы, можно добиться значительного снижения концентрации гликогена.

При определенных целях тренинга эффект от последующей нагрузки может не просто линейно суммироваться с эффектом, полученным в предыдущем подходе, но и усиливать его. Так, например, в случае с короткой интенсивной нагрузкой, максимум потребления кислорода наблюдается не во время самого подхода, а несколько позже, когда происходит так называемый " возврат кислородного долга" - восстановление за счет кислородного окисления уровня макроэнергетических фосфатов (АТФ и креатинфосфата), израсходованных в ходе интенсивной работы. За дание повторных нагрузок после существенного восстановления уровня макроэнергетических фосфатов, но при сохраняющемся некоторое время высоком уровне потребления кислорода, приводит к повышению уровня потребления кислорода от подхода к подходу, что оказывает более сильный тренирующий эффект на аэробные способности организма. В рассматриваемом примере отдых между подходами уже не может быть произвольным, так как повторная нагрузка после возвращения потребления кислорода к уровню, соответствующему состоянию покоя, не даст необходимого тренировочного эффекта. Скорость восстановления макроэнергетических фосфатов примерно равна скорости их расхода, поэтому отдых после нагрузки, в рассматриваемом примере, по длительности должен совпадать с длительностью самой нагрузки, например, 30 секунд работы -30 секунд отдыха.

По каким же правилам должны суммироваться тренировочные эффекты от повторяющихся в ходе одной тренировки нагрузок, если цель тренировки разрушение миофибриллярных белков? Как я уже упоминал, каждый последующий подход по степени разрушительного воздействия на мышцы менее эффективен, чем предыдущие, ввиду постепенного снижения мощности сокращения по причине остаточного накопления кислых продуктов метаболизма в мышце. Очевидно, что в этом случае последующая нагрузка не может каким либо образом усилить эффект от предыдущей, помимо простого суммирования микротравм, полученных в ходе каждого отдельного подхода. Следовательно, отдых между подходами не ограничен какими либо особыми условиями, помимо времени которым вы располагаете, и должен обеспечивать существенное снижение концентрации молочной кислоты в мышце, дабы мышца могла снова развить максимальную скорость расхода энергии. Полный вывод молочной кислоты из мышцы, при ее значительном накоплении, обеспечивается только по истечении нескольких часов после нагрузки, но для существенного снижения концентрации молочной кислоты в мышце достаточно 5-10 минут - для небольших мышц, или при работе, не связанной со значительным накоплением молочной кислоты, и 10-20 минут - для крупных мышечных групп, или при сильном закислении мышц в ходе подхода. Именно такой длительный отдых между подходами обеспечит максимальный эффект от повторяющихся нагрузок в рассматриваемом нами типе тренинга. Короткий интервал отдыха, который так любят многие бодибилдеры, обеспечивающий чувство " закачки" мышц, приводит лишь к максимальному закислению мышц и крови, что может быть полезно для развития сопротивляемости организма снижению рН внутренней среды, но не имеет прямого отношения к стимулированию последующего роста мышц.

И так, со временем отдыха мы разобрались. Каково же оптимальное количество подходов?

Как вы поняли молочная кислота полностью не выводится из мышцы даже при отдыхе между подходами в 10-20 минут, то есть развиваемая мощность сокращения в каждом последующем подходе будет несколько ниже, чем в предыдущем. Задавать повторную нагрузку на мышцу имеет смысл только на определенном требуемом уровне интенсивности, поэтому после существенного снижения мощности мышц, развиваемой во время подхода, нагрузку на данную мышцу следует прекращать. Эксперименты показывают, что переломный момент в развиваемой мощности, наступает в среднем после 5-го 6-го подхода в упражнении, по-видимому, именно это количество подходов для тренировки одной мышечной группы и следует признать оптимальным в рассматриваемом нами режиме тренировки. Но данное количество повторений оптимально для максимального разрушения миофибриллярных белков, но является ли максимальное разрушение оптимальным для достижения максимального сверхвосстановления мышц во время отдыха?

Закон восстановления энергетических резервов гласит, что чем больше расход энергии при работе мышц, тем интенсивнее протекают процессы восстановления и тем значительнее превышение исходного уровня энергетических ресурсов в фазе суперкомпенсации. Однако при чрезмерно интенсивной работе, связанной со значительным накоплением продуктов метаболизма, скорость восстановительных процессов мо жет снизиться, а фаза суперкомпенсации будет достигнута в более поздние сроки и выражена в меньшей степени. По-видимому, этому же закону подчиняются и процессы восстановления белковых структур мышц. Как я уже показал во второй части, чрезмерные разрушения затрудняют процессы восстановления и могут привести даже к отрицательному результату. Поэтому следует признать, что количество микротравм, полученных в ходе тренировки, должно быть не максимальным, а оптимальным, достаточным для того, чтобы инициировать восстановительные процессы, но не слишком большим, чтобы сорвать восстановительные возможности организма. Однозначно указать количество подходов, необходимое для достижения оптимального количества микротравм невозможно, так как это количество зависит от уровня тренированности мышц и интенсивности задаваемой нагрузки. Так, даже один интенсивный подход (здесь и далее имеется в виду интенсивность, позволяющая выполнять упражнение в рамках необходимого диапазона длительности нагрузки) может быть эффективней нескольких менее интенсивных подходов, а несколько высокоинтенсивных подходов могут оказаться слишком разрушительными для организма.

В регулировании уровня тренировочной нагрузки существует два конкурирующих методологических подхода:

Первый, - когда объем выполняемой нагрузки задается заранее, например, 5-6 подходов, но на заданном уровне интенсивности и при заданной длительности подхода (заранее известном весе снаряда и количестве повторений), естественно подходы выполняются не до отказа, а прерываются по выполнению заданной работы. По мере повышения тренированности мышц повышается и интенсивность подходов (вес снаряда), таким способом осуществляется четкое дозирование нагрузки. Ошибкой, в данном случае, является не регулировать нагрузку заранее, а стремится выполнять все подходы до отказа на пределе интенсивности, стараясь выжать максимум из организма.

Второй подход основывается на прямо противоположном принципе - в работе используется нагрузка максимальной интенсивности, которую можно развить в рамках необходимого диапазона длительности, а вот общее воздействие тренировки на мышцу регулируется количеством повторений такой нагрузки (то есть количеством подходов). В этом случае необходимое количество подходов, как правило, оказывается меньшим, чем в первом методе. Достигаемый эффект зависит не только от величины нагрузки, но и от уровня тренированности мышц. Так в нетренированных мышцах даже один подход далеко не предельной интенсивности вызывает сильнейшие разрушения (вспомните, ваши ощущения на следующий день после первого посещения тренажерного зала) и наоборот в тренированной мышце даже множество высокоинтенсивных подходов может не вызвать необходимого эффекта.

Как вы помните, при редких тренировках, рекомендуемых Ментцером, энергетический потенциал мышц остается на довольно низком уровне даже в течение длительного периода тренировок, так как срочный тренировочный эффект в энергетической сфере не переходит в долговременную адаптацию ввиду большого перерыва в тренировках, что и облегчает воздействие нагрузки на мышцу. В 'Супертренинг' Ментцера каждая тренировка по разрушающему миофибриллярные белки эффекту близка к " первой" тренировке, именно поэтому при таком виде тренинга оказывается достаточным одного единственного " отказного" подхода.

Подбор упражнений

И так, если для роста мышцы, может быть достаточно даже одного подхода, то, кажется, что тренировать мышцу несколькими упражнениями тем более ни к чему. С другой стороны, варьируя используемыми упражнениями можно добиться воздействия на различные пучки мышечных волокон, что может способствовать развитию пропорциональной мускулатуры. Однако тяжелый тренинг, основанный на стимулировании роста мышц путем их предварительного разрушения, требует напряжения восстановительных функций организма и когда ему придется делить ограниченные пластические и энергетические ресурсы между всеми мышцами, нуждающимися в восстановлении, не факт что результат восстановления вас устроит. Ка ждому атлету придется искать баланс между желанием получить идеальную фигуру и восстановительными резервами организма. Если вы не используете в период тяжелых тренировок дополнительные " восстановители", предпочтительно будет остановить свой выбор на нескольких крупных мышечных группах и базовых упражнениях, и не распылять свои силы на весь спектр существующих движений, тем более что влияние упражнений на форму мышц сильно преувеличено. То, каким будет ваш бицепс, определяется генетически, а не тем, делаете ли вы подъем гантелей на скамье Скотта или концентрированные сгибания. Если вы посмотрите на юношеские фотографии Арнольда Шварценегера, то увидите на них знакомые очертания мышц будущего Мистер Олимпия и поймете, что годы тренировок практически не изменили форму его мышц, а лишь увеличили их в размере.

Почему я настаиваю именно на базовых упражнениях со свободными весами, а не рекомендую воспользоваться тем или иным тренажером? Кажется, что с точки зрения теории, что бы вы ни делали, лишь бы расходовали энергию, а уж делаете вы это в тренажере или с помощью штанги не имеет значения, но так кажется только на первый взгляд. Большинство тренажеров основаны на системе блоков, сила трения, в которых, достигает порой значительных величин, в результате позитивное прямое движение затруднено, зато при обратном - негативном движении (именно тогда когда мышца способна развить максимальную силу) сила трения облегчает работу, в результате чего средняя мощность подхода в тренажере ниже, чем в аналогичном движении со свободным весом, что естественно отрицательно сказывается на достигаемом эффекте. Из существующих тренажеров могу порекомендовать только тренажеры рычажного типа с навешивающимися дисками, - работа в них аналогична работе со свободными весами. Скажу еще, что тот, кто изобретет тренажер, в котором опускать вес будет тяжелее, чем поднимать его, произведет переворот в бодибилдинге.

Частота тренировок

И так переходим к самому главному вопросу, вызывающему наибольшее количество споров - каков должен быть отдых между тренировками?

Рекомендую вам обратиться ко второй части статьи и вспомнить, что в самом простом случае величина отдыха между тренировками определяется временем необходимым для восстановления и достижения состояния " суперкомпенсации" ведущей тренируемой функции.

Еще совсем недавно было распространено мнение, что для восстановления мышцы после тренировки достаточно 48-ми часов. Возможно, в этом есть доля истины, так как примерно через такой период отдыха наблюдается суперкомпенсация параметров ответственных за энергетический потенциал мышцы. В случае же получения микротравм через 48 часов мышца не только не восстановится, но даже не успеет очиститься от поврежденных структур. Что же, возможно для восстановления мышц требуется 5-7 дней? Именно к этому сроку обычно пропадают болевые ощущения в мышцах после тяжелой нагрузки, и именно такой период отдыха становится популярным в последнее время. Вынужден разочаровать вас - исчезновение болевых ощущений вовсе не означает, что мышца восстановилась, и достигнут эффект от тренировки, это значит лишь то, что в мышце закончилось воспаление, сопровождающее процессы лизиса поврежденных структур. Для полного восстановления поврежденных волокон и достижения состояния " суперкомпенсации", в зависимости от величины повреждений может потребоваться еще не менее недели. Получается, что тренировка, сопровождающаяся микротравмами мышц и сильными болевыми ощущениями, не должна практиковаться чаще, чем один два раза в месяц на одну группу мышц. Применение стероидов может сократить время отдыха, но не кардинально, скорее стероиды делают фазу суперкомпенсации более выраженной.

Предвижу возражения - если для восстановления после тренировки требуется около двух недель, то как же удается получить рост мышечной массы при тренировках одной мышцы два три раза в неделю? Плохо ли, хорошо ли, но мышца растет и в этом случае. Дело в том, что на начальном этапе таких тренировок мышечные волокна поврежда ются на каждой тренировке, и ни о каком полноценном восстановлении речь не идет. Одни микротравмы накладываются на другие, и так продолжается около месяца до тех пор, пока значительно не возрастет энергетический потенциал мышцы, что делает блокирует получение микротравм, и только после этого в мышцах начинают преобладать восстановительные процессы. Таким образом, при частых тренировках гипертрофия мышц становится возможной только после существенной адаптации мышц к задаваемой нагрузке. Процессы восстановления и роста длятся еще около месяца, на этом, если ничего не менять в тренировках, рост мышечной массы и силовых показателей заканчивается, по причине все той же адаптации мышц к нагрузке и отсутствия нового стимула к росту. Как правило, требуется еще около двух месяцев на то, чтобы понять, что выбранная методика тренировок перестала давать результаты и попытаться что-то изменить в тренировках. Итак, на достижение гипертрофии мышц при обычных тренировках (наиболее распространенных по всем тренажерным залам) требуется два - три месяца, практически таких же результатов в увеличении мышечной массы (но не работоспособности) можно получить от нескольких тренировок, давая мышцам полноценный отдых длительностью полторы-две недели, а не дожидаясь пока мышцы добьются отдыха сами, адаптировавшись к нагрузке.

Что в итоге?

И так, вы, наверное, уже обратили внимание на то, что из сделанных теоретических предпосылок, в качестве системы тренировок, направленной на развитие сократительных структур мышц, постепенно вырисовывается система сильно напоминающая 'Супертренинг' Ментцера, отличительными чертами которой являются:

- ограниченное количество используемых упражнений (одно два базовых упражнения на одну мышечную группу);

- ограниченное количество высокоинтенсивных " отказных" подхода в каждом упражнении;

- длительный отдых между тренировками одной мышечной группы (полторы-две недели).

Казалось бы, эти положения полностью противоречат принципам современного бодибилдинга, основой которого являются практически ежедневные, высокообъемные тренировки. Критики системы Ментцера утверждают, что данная система противоречит основам теории физической культуры и вообще физиологии человека, и не может дать никакого результата. Однако как я показал выше это не так. Просто для адептов классического тренинга рост мышц стал неразрывно связан с объемом выполняемой работы. Между тем, как я показал выше, стимулом к росту мышечной ткани является не собственно объем работы, а изменения внутренней среды мышц, возникающие входе тренировки. Объем работы может быть лишь средством, вызывающим эти изменения, но далеко не единственным, - повышение интенсивности выполняемой работы оказывает более значительное влияние на состояние внутренней среды мышц, даже при незначительном объеме выполняемой работы.

Отдых же между тренировками в 'Супертренинг' определяется временем наступления " суперкомпенсации" ведущей тренируемой функции - количества сократительных структур мышцы. Развитие всех остальных параметров, имеющих меньшее время достижения фазы " суперкомпенсации" (как то количество гликогена, креатинфосфата, окислительных ферментов и ферментов гликолиза в мышце и др.), попросту игнорируется, что, конечно, сказывается на объеме и силе мышц, но облегчает воздействие тренировки на мышцы и практически избавляет от такой проблемы бодибилдинга как излишняя адаптация мышц к нагрузке, а длительный период отдыха обеспечивает полноценное восстановление и избавляет от другой возможной проблемы - перетренерованности.

Не следует ожидать от " Супертренинга" развития тех качеств, для тренировки которых он не предназначен. Вклад сократительных структур в силу и массу мышц является наиболее значительным, но далеко не единственным, соответственно, при всех своих достоинствах, 'Супертренинг' не может обеспечить максимально возможное развитие силы и массы мышц.

Наиболее полное развитие мышц и силовых качеств спортсмена могут обеспечить лишь разносторонние тренировк и, направленные на улучшение всех основных двигательных функций и рост всех основных компонент мышечного волокна.

Прежде чем приступить к рассмотрению правил построения таких многоцелевых тренировок следует систематизировать тренировочные цели, а затем определить основные функции, развитие которых может привести к достижению поставленных целей.

Прежде чем приступить к рассмотрению правил построения многоцелевых тренировок следует систематизировать тренировочные цели, а затем определить основные функции, развитие которых может привести к достижению поставленных целей.

В зависимости от специализации спортсмена в качестве основной цели тренинга можно выделить развитие следующих качеств мышц:
- сила, развиваемая мышцами в специализированных движениях (пауэрлифтинг, тяжелая атлетика);
- силовая выносливость (гиревой спорт, борьба, спринтерский бег);
- мышечные объемы (бодибилдинг).

Сила

Давайте для начала разберемся, от чего зависит результат, достигаемый спортсменом в специализированных движениях в тяжелой атлетике или пауэрлифтинге. Проявление скоростно-силовых качеств мышц, в упомянутых видах спорта, несколько отличается. Цель пауэрлифтера поднять максимальный вес независимо от скорости движения. В тяжелой атлетике соревновательные движения технически боле сложные, и конечный результат зависит от того, будет ли штанга в нужной точке траектории иметь нужную скорость движения. Масса снаряда в тяжелой атлетике относительно ниже, чем в пауэрлифтинге, однако, cнаряд приходится разгонять до значительно больших скоростей. Но при внимательном рассмотрении различия оказываются не столь существенными. Дело в том, что сила, которую спортсмену необходимо прикладывать к снаряду для его равномерного подъема (вернее проекция силы на вертикальную ось) равна произведению массы снаряда на ускорение свободного падения, вспомните второй закон Ньютона F=mg (напоминаю, что буквами F принято обозначать силу, m -массу, а g- ускорение свободного падения). Конечно, в момент отрыва, для придания снаряду начальной скорости, необходимо приложить несколько большую силу, так как снаряду необходимо сообщить начальное ускорение. Сила, которую необходимо в этом случае приложить к снаряду, равна F=m(g+a), где а - ускорение, сообщаемое снаряду. Различие между пауэрлифтингом и тяжелой атлетикой как раз и проявляется в величине этого ускорения. В пауэрлифтинге штанге необходимо сообщить лишь минимальное ускорение, достаточное для ее срыва и придания минимальной скорости, достаточной для прохождения мертвой точки. В тяжелой же атлетике требование к развиваемому ускорению значительно выше, чем в пауэрлифтинге. Но, и в том и в другом случае результат зависит от силы, прикладываемой к снаряду. Чем выше сила, тем больше масса штанги, которой пауэрлифтер может придать минимально необходимое ускорение, и тем больше ускорение, которое тяжелоатлет может придать штанге с определенной массой. Таким образом, в обоих видах спорта результат зависит от силы, прикладываемой к снаряду, а, соответственно, от силы, развиваемой мышцами. Здесь следует иметь в виду и еще одно различие между пауэрлифтингом и тяжелой атлетикой - сила мышц, зависит от скорости их сокращения, вспомните соотношение Хилла, упоминаемое мной в первой части, - чем выше скорость сокращения мышцы, тем меньшую силу она способна развить. В тяжелой атлетике мышцы вынуждены сокращаться при несколько больших скоростях, чем в пауэрлифтинге, поэтому и развиваемая ими сила несколько меньше.

Результат в соревновательных движениях зависит не только от силы мышц, но и от оптимальной траектории движения, своевременного и эффективного приложения силы к снаряду, то есть от техники выполнения упражнения. Я не буду подробно останавливаться на этом вопросе, так как не считаю себя в нем достаточно компетентным, тем более, что за годы развития таких видов спорта как тяжелая атлетика и пауэрлифтинг накоплен богатый методический материал по постановке техники соревновательных движений. Скажу только, что основой освоения техники выполнения упражнения является наработка определенного количества движений, что приводит к закреплению в центральной нервной системе двигательного стереотипа. Отчасти, видимо, поэтому одним из существенных критериев в планировании тренировочных нагрузок на начальном этапе тренин га, в классической спортивной школе, является КПШ - количество поднятых штанг.

Давайте лучше рассмотрим, от чего зависит собственно сила, развиваемая мышцами, и какие методы тренировки могут повлиять на способность мышц генерировать силу. Как вы помните из первой части, сократительным элементом волокна является миофибрильная нить. Силу, развиваемую миофибриллой, генерируют боковые выступы молекулы миозина, называемые мостиками, совершая гребковые движения. Обращаю ваше внимание на тот факт, что миофибрилла, это цепочка последовательно соединенных саркомеров, а крепость цепи, как известно, зависит от крепости любого ее звена. Сила миофибриллы как целого не может быть больше силы ее части - отдельного саркомера, то есть каждый саркомер должен развивать одинаковую силу, и эта сила равна силе всей миофибриллы. Сила, развиваемая саркомером, зависит от его длины, чем длиннее саркомер, тем большим количеством миозиновых мостиков он располагает и тем сильнее его сокращение. Мышечные волокна разных мышц и даже одних и тех же мышц, но у различных индивидов имеют разные длины саркомеров, и, соответственно, разную способность к генерации силы. Однако, длина саркомера задается генетически и не поддается тренировке, поэтому в дальнейшем влияние длины сркомера на силу я даже не буду рассматривать.

И так, из выше сказанного можно сделать вывод, что сила мышцы зависит не от длины миофибрильных нитей (от этого зависит амплитуда сокращения мышцы), а от количества миофибрильных нитей в поперечном сечении мышцы. А вот этот параметр как раз и поддается развитию.

Основные принципы тренировки, нацеленной на рост сократительных структур мышц, я рассматривал во второй части. Напомню основную фабулу:

Высокоинтенсивные тренировки, приводящие к сокращению мышц в условиях недостатка макроэнергетических фосфатов, разрушают сократительные белки мышечных волокон. Микротравмы мышечных волокон запускают восстановительные процессы, приводящие к делению клеток - сателлит и увеличению клеточных ядер в мышечных волокнах, что при условии достаточно длительного и полноценного восстановления, приводит к увеличению сократительных структур в мышце.

Во второй части я показал, что сила, развиваемая мышечным волокном, и скорость его сокращения зависит от насыщенности волокна АТФ. Так как сокращение мышц не мгновенно и длится некоторое время даже при единичных повторениях упражнения и сопровождается расходом АТФ, то результат выполнения упражнения зависит еще и от способности мышц мгновенно восстанавливать уровень АТФ, то есть от концентрации в волокне креатинфосфата и креатинкиназы.

Содержание креатинфосфата в мышцах спортсменов 1.5-2 раза выше, чем у нетренированных людей, соответственно данное качество мышц поддается тренировке. Посмотрим, какой вид тренировки наиболее эффективен для целей повышения в мышцах концентрации креатинфосфата.

Надо отметить, что содержание креатина в мышцах значительно превышает концентрацию собственно креатинфосфата. Так общая концентрация креатина в мышцах составляет в среднем 120 ммоль/кг, в то время как с фосфатом связано (то есть является креатинфосфатом) только около 70 ммоль/кг. Таким образом, существенная часть креатина в мышцах находится в несвязанном с фосфатом состоянии, и резерв увеличения концентрации креатинфосфата заключается как раз в этом не связанном с фосфатом креатине, необходимо лишь заставить мышцы фосфолировать больше креатина. Существенное снижение концентрации креатинфосфата во время интенсивного сокращения мышц (то есть отсоединение от него фосфата и превращение просто в креатин) сразу по прекращению работы приводит к интенсификации процессов восстанавливающих его уровень. Во время отдыха, благодаря кислородному окислению, АДФ и фосфат, в избытке накопившиеся в мышце в результате гидролиза АТФ при работе миозиновых мостиков и кальциевых насосов, вновь превращаются в АТФ, а затем фосфатная группа переносится с АТФ на креатин, с образованием креатинфосфата. В рез ультате концентрация креатинфосфата в мышце уже через несколько минут отдыха не только восстанавливается, но и превышает исходный уровень, характерный для состояния покоя. То есть наблюдается сверхвосстановление креатинфосфата в мышце, однако, такое состояние длится не долго и концентрация креатинфосфата снижается уже через пару часов. Проводя повторные нагрузки на мышцу в состоянии суперкомпенсации, то есть после отдыха в несколько минут, можно добиться заметного повышения концентрации креатинфосфата. Правда, уже через несколько часов концентрация последнего существенно снижается, но, по-видимому, некоторое превышение исходного уровня сохраняется дольше, так как регулярные тренировки (не реже 2-3-х раз в неделю) приводят к постепенному относительно стойкому повышению концентрации креатинфосфата в мышцах, в противовес этому, перерыв в тренировках, дольше, чем на одну неделю, заметно снижает уровень креатинфосфата.

Рассмотрим чуть более подробно принципы тренировок, направленных на развитие креатинфосфатной мощности и емкости мышц.

Уровень нагрузки при таких тренировках должен быть достаточно высоким (чтобы активировать большую часть мышечных волокон и обеспечить высокую скорость расхода энергии) и составлять 70-85 % от единичного максимума.

Длительность нагрузки должна быть таковой, чтобы запасы креатинфосфата в мышце были использованы не менее чем на половину, то есть нагрузка должна продлиться не менее 7-ми секунд. В то же время работу желательно прекращать до активации гликолиза, так как накопление молочной кислоты в мышцах приводит к замедлению темпов восстановления АТФ и креатинфосфата. Соответственно, стремится к полному отказу мышц не следует, и нагрузка не должна длиться дольше 15 секунд. Если выше сказанное перевести на язык повторений, то рекомендуемое количество повторений в подходе составит 4-6.

Отдых между подходами должен быть около 3-5минут, что необходимо для обеспечения сверхвосстановления уровня креатинфосфата. И хотя теоретически возможен и более длительный отдых, так как сверхвосстановление длится полтора - два часа, но исходя из принципа экономии тренировочного времени, достаточно ограничится 3-5 минутами.

Количество таких подходов должно составлять от 5 до 10, больше просто не имеет смысла, так как резервы подъема уровня креатинфосфата в ходе одного занятия не беспредельны, а вот усталость будет накапливаться от подхода к подходу.

Интересно отметить, что Заслуженный тренер России по пауэрлифтингу Б.И. Шейко иногда практикует на своих подопечных выполнение серий подходов одного упражнения два раза за одну тренировку. Например, после 5-6 подходов в жиме лежа следует нагрузка на ноги, а затем спортсмен вновь возвращается к выполнению жима лежа и делает еще 5-6 подходов. Не знаю, какой смысл сам автор программ вкладывает в эти действия (возможно, просто стремится к общему увеличению объема нагрузки на требуемом уровне интенсивности), но, помимо всего прочего, такого рода практика должна способствовать повышению уровня креатинфосфата в мышцах, так как повторное возвращение к выполняемому упражнению после получасового -часового отдыха происходит на фоне повышенного предыдущими подходами уровня креатинфосфата.

Говоря о методах повышения концентрации креатинфосфата в мышцах, нельзя не поднять вопрос об эффективности приема креатина в качестве пищевой добавки. Запасы креатина в организме пополняются благодаря синтезу его в печени и поступлению креатина с пищей (мясные продукты). Эксперименты (Harris et al.) показывают, что прием высоких доз креатина 5гр. 4-5 раз в сутки (5гр. креатина эквивалентно одному килограмму сырого мяса) в течение недели приводит к существенному увеличению как концентрации креатина в мышцах, так и концентрации креатинфосфата. Но наиболее выражен прирост этих показателей при ежедневных тренировках. Так содержание креатина в мышцах в среднем увеличилось с 118.1 ммоль/кг до 148.5 ммоль/кг в не упражнявшейся мышце и до 162.2 ммоль/кг в у пражнявшейся. Содержание креатинфосфата за этот же период возросло от 81.6 ммоль/кг до 93.8 ммоль/кг в не упражнявшейся и до 103.1 в упражнявшейся мышце. Дальнейший прием креатина не привел к существенным изменениям концентрации креатина и креатинфосфата в мышцах. Интересно отметить что ряд спортсменов не получили существенного прироста вышеуказанных показателей, несмотря на потребление креатина, как оказалось эти спортсмены изначально обладали высокими показателями содержания креатина в мышцах. В данных экспериментах убедительно доказано, что прием сверх доз креатина с пищей положительно сказывается на креатинфосфатной емкости мышц, однако о побочных эффектах таких дозировок ничего не сообщается.

И так мы рассмотрели методы тренировок, способствующие развитию силы собственно мышечных волокон. Сила же мышцы как целого зависит от того, как много волокон одновременно включены в работу и от того, с какой частотой стимулируются мышечные волокна (чем выше частота, тем сильнее сокращение). Что, в свою очередь, зависит от того, насколько сильно поляризуется мембрана тела мотонейрона, расположенного в спинном мозге, под воздействием сигнала поступающего по сети нейронов из вышележащих отделов ЦНС (центральной нервной системы). Путь нервного импульса начинается в двигательных центрах головного мозга и проходит вниз по спинному мозгу к мотонейронам, иннервирующим волокна той или иной мышцы. Напоминаю, что каждый мотонейрон имеет свой порог возбудимости и включается в работу, только если возбуждение его мембраны превышает этот порог. Таким образом, чем сильнее импульс, поступающий от мозга, тем больше мотонейронов, а, соответственно, и иннервируемых ими волокон, подключаются к сокращению. Кроме того, чем сильнее поляризация мембраны мотонейрона, тем выше частота потенциала действия, возникающего в мотонейроне, и передающегося по аксону к мышечным волокнам.

Управление движением процесс крайне сложный и запутанный и я не рискну утверждать, что ученые здесь до конца во всем разобрались, а я тем более далек от полного понимания этих процессов. Поэтому я постараюсь объяснить ключевые моменты, не вдаваясь в дебри.

Судя по всему, управление двигательной активностью организовано так, что мозгу очень тяжело заставить сокращаться все двигательные единицы (мотонейроны и иннервируемые ими волокна) одновременно. ЦНС не генерирует максимальный импульс сразу, а запускает пробный импульс определенной величины (в зависимости от ожидаемой нагрузки), который активирует определенное количество мотонейронов. Специальные рецепторы, расположенные в мышцах (мышечные веретена), сигнализируют в мозг об изменениях длины мышцы, под действием поступившего сигнала и если сокращения не происходит или скорость его недостаточна (нагрузка слишком велика), то мозг усиливает запускающий сигнал и вовлекает в работу большее количество мотонейронов, одновременно усиливая частоту потенциала действия уже работающих мотонейронов. В результате одни волокна вовлекаются в работу чуть раньше, другие чуть позже, таким образом, максимумы сокращения различных волокон не совпадают, и двигательные единицы работают асинхронно (как поршни в двигателе автомобиля). Так достигается плавность движения, но не реализуется максимум силы, который мог бы быть достигнут при одновременном совпадении максимумов сокращения всех волокон мышцы. Между тем способность к быстрому вовлечению в работу максимального количества волокон поддается тренировке. Задача атлета научить мозг генерировать как можно более мощный запускающий импульс. Похоже, что развитие таких способностей подчиняется тем же правилам, что и тренировка всех иных функциональных качеств спортсмена, ранее рассматриваемых в данной работе. Прохождение максимально мощного нервного импульса по всей цепочке, от двигательных отделов головного мозга, до мышечных волокон, вызывает напряжение всех элементов этой цепи и ослабление их функциональных возможностей. То есть наблюдается физическая усталость - тормож ение нервной системы, что выражается в потере способности ЦНС генерировать и передавать сигнал требуемой силы. Восстановление функции нервной системы в период отдыха приводит к суперкомпенсации ее функциональных возможностей, а регулярное повторение этих процессов приводит к закреплению долговременных адаптационных изменений в ЦНС спортсмена.


Поделиться:



Популярное:

  1. II. Время и место проведения. Заявки.
  2. II. Международные экономические отношения . . 49
  3. II. НАЦИОНАЛЬНАЯ ОХРАНА И МЕЖДУНАРОДНАЯ ОХРАНА КУЛЬТУРНОГО И ПРИРОДНОГО НАСЛЕДИЯ
  4. IV. РАБОТА МЕЖДУНАРОДНОЙ КОНФЕРЕНЦИИ
  5. Lex mercatoria в практике международного коммерческого арбитража.
  6. X МЕЖДУНАРОДНЫЙ КУЛЬТУРНО-ЗРЕЛИЩНЫЙ СПОРТИВНЫЙ
  7. XVIII Международная научно-практическая конференция
  8. Абсолютно твердое тело - система материальных точек, расстояние между которыми не изменяются в данной задаче. Абсолютно твердое тело обладает только поступательными и вращательными степенями свободы.
  9. Акустические волны. Связь между давлением, плотностью, скоростью и смещением частиц воздуха в волне. Интенсивность акустической волны.
  10. Анализ сознат.-сопост. и сознат.-практ. подходов к обуч-ю ин. я-м (Щерба, Беляев, Рахманов и др.)
  11. Билет 1. Время жизни объектов. Связь с типами памяти и областями видимости
  12. БОЛЬШАЯ ПОТАСОВКА МЕЖДУ ПИНОККИО И ЕГО ТОВАРИЩАМИ, ПРИЧЁМ ОДИН ИЗ НИХ РАНЕН, И ПИНОККИО АРЕСТОВЫВАЮТ ПОЛИЦЕЙСКИЕ


Последнее изменение этой страницы: 2016-08-24; Просмотров: 701; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.039 с.)
Главная | Случайная страница | Обратная связь