Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Виды средних и методы их расчета



 

Статистическая совокупность содержит некоторое количество стати­стических величин, имеющих, как правило, разные значения и призна­ки, что делает невозможным сравнение нескольких совокупностей в целом.Для этой цели применяется средняя величина, как обобщающий показатель совокупности, характеризующий уровень изучаемого явле­ния или процесса.

Средняя величина всегда обобщает количественное выражение при­знака и погашает индивидуальные различия статистических величин совокупности, вызванные случайными обстоятельствами. Но по значе­нию средней величины нельзя делать принципиальные выводы.

Так, если один ученик имеет тетрадь в 48 листов, а другой - ни одной, то в среднем получается по 2 у.шт. на ученика. Но из этого нельзя заключать, что все ученики школьными тетрадями обеспечены.

В статистике соблюдаются следующие принципы применения сред­них величин.

1. Необходим обоснованный выбор статистической совокупности, для которой определяется средняя величина.

2. При определении средней величины исходят из качественного содержания статистических величин, учитывая возможную взаимосвязь изучаемых признаков.

3. Средняя величина должна рассчитываться по однородной сово­купности, которая позволяет применять метод группировки, предпола­гающий расчет системы обобщающих показателей.

4. Общая средняя величина должна подкрепляться и поясняться групповыми средними величинами.

Средние величины делятся на два больших класса: степенные и структурные. К последним относятся мода и медиана, но наиболее час­то применяются степенные различных видов.

Степенные средние, в зависимости от представления отдельных ве­личин, могут быть простыми и взвешенными. Простая средняя рассчи­тывается при наличии двух и более статистических величин, располо­женных в произвольном порядке. Общая формула простой средней величины имеет вид

= .(1.11)

Взвешенная средняя величина рассчитывается по сгруппированным статистическим величинам с использованием следующей общей формулы

= (1.12)

При этом обозначено:

Xi – значения отдельных статистических величин или середин группировочных интервалов;

m - показатель степени, от значения которого зависят следующие виды степенных средних величин:

при m = -1 средняя гармоническая;

при m = 0 средняя геометрическая;

при m = 1 средняя арифметическая;

при m = 2 средняя квадратическая;

при m = 3 средняя кубическая и так далее.

Используя общие формулы простой и взвешенной средних при разных показателях степени m, получаем частные формулы каждого вида. Так, приняв m = 1, находим, что простая средняя арифметическая величина определяется по формуле

= . (1.13)

Аналогично для взвешенной средней арифметической величины получаем формулу через частоты или через доли (так как )

= . (1.14)

Не представляет трудностей и вывод формул для простых и взвешенных средних квадратических и кубических величин. Несколько сложнее вывод средней гармонической при m = –1. Так, используя формулу (1.11), имеем вначале

гм = = ,

а окончательно получим, что простая средняя гармоническая величина определяется по формуле

ГМ = , (1.15)

Аналогично выводится формула взвешенной средней гармонической величины, которая имеет следующий окончательный вид через частоты или через доли

ГМ = , (1.16)

Наиболее часто употребляются формулы средних арифметических и гармонических величин.

Средние арифметические и гармонические взвешенные не часто применяются для осреднения относительных величин ин­тенсивности, т.е. показателей, имеющих дробную размерность. При этом соблюдаются следующие правила.

1. Если имеются дополнительные данные по числителю дробной размерности, то применяется средняя гармоническая.

2. Если имеются дополнительные данные по знаменателю дробной размерности, то применяется средняя арифметическая.

3. Если неясно, к числителю или знаменателю относятся дополни­тельные данные, то поочередно применяются средняя гармоническая и арифметическая, а затем определяется средняя между ними величина.

Для иллюстрации правил решим задачу: 4 фирмы выпускают одинаковую продукцию при себестоимостях в руб/ед.: Si = 5, 3, 4, 6, а доли фирм равны соответственно di = 0, 3; 0, 2; 0, 4; 0, 1. Определить среднюю себестоимость продукции.

Для решения примера используем вышеизложенные правила.

1. Если доли фирм относятся к текущим затратам (числитель показателя себестоимости), то ее среднее значение определяем по формуле (1.16) как среднюю гармоническую величину

= 1/ (0, 3/5 + 0, 2/3 + 0, 4/4 + 0, 1/6) = 4, 1 (руб./ед.)

2. Если доли фирм относятся к количеству выпущенной продукции (знаменатель показателя себестоимости), то ее среднее значение находим по формуле (1.14) как среднюю арифметическую величину

= 5*0, 3 + 3*0, 2 + 4*0, 4 + 6*0, 1 = 4, 3 (руб./ед.)

3. Если не сказано, к чему относятся доли фирм, то в дополнение к выполненным расчетам определяем среднюю себестоимость как простую среднюю величину из полученных результатов. То есть = (Sгм + Sар)/2 = 4, 2 (руб./ед.)

Таким путем рассчитываются средние значения и других показателей с дробной размерностью.

Разновидностью простой средней арифметической служит средняя хронологическая величина, когда имеются моментные статистические величины на определенную одинаковую дату, например, на 1-е число каждого месяца в году. Формула средней хронологической теоретиче­скому выводу не поддается и записывается приближенно в виде

. (1.17)

где Х1 и Xn — первое и последнее значения статистической величи­ны; Xi — промежуточные значения; n — общее число значений.

По такой формуле бухгалтерия определяет среднегодовую стоимость основных фондов, учитывая ее значения на 1-е число каждого месяца. При этом n = 13, т. к. 1-е января фиксируется дважды: у отчетного и следующего за отчетным года. Аналогично коммерческие банки опре­деляют среднегодовую сумму вкладов и выданных кредитов. Если учет квартальный, то n = 5.

Средняя геометрическая величина получается при подстановке в формулу (1.11) m=0:

= =

Для раскрытия неопределенностей этого вида прологарифмируем обе части формулы (1.11):

.

Подставляя в правую часть равенства m=0, получаем неопределенность вида . Используя правило Лопиталя и дифференцируя отдельно числитель и знаменатель по переменной m, получаем

.

Следовательно, при m=0

.

Потенцируя, находим

. (1.18)

Формула (1.18) является формулой средней геометрической простой, а если использовать частоты f, получим формулу средней геометрической взвешенной:

= взвешенная, (1.19)

где П—символ произведения.

Средняя геометрическая величина применяется, если задана после­довательность индексов динамики, указывающих, например, на измене­ние уровня производства каждого последующего года по сравнению с предыдущим.

Рассчитанные для одних и тех же данных различные средние вели­чины оказываются неодинаковыми. Здесь действует правило мажорантности средних величин (впервые сформулировал профессор А. Я. Боярский), согласно которому с ростом показателя степени m в общих формулах увеличивается и средняя величина. То есть

< < < <

Это правило частично подтвердилось расчетом средней себестоимо­сти продукции, где средняя гармоническая получилась равной 4, 1 руб./ед., а средняя арифметическая 4, 3 руб./ед. Если рассчитать еще и среднюю геометрическую взвешенную, то она будет равной 4, 2 руб./ед.

Особый вид средних величин – структурные средние – применяется для изучения внутреннего строения рядов распределения значений признака, а также для оценки средней величины (степенного типа), если по имеющимся статистическим данным ее расчет не может быть выполнен.

В качестве структурных средних чаще всего используют показатели моды – наиболее часто повторяющегося значения признака – и медианы – величины признака, которая делит упорядоченную последовательность его значений на две равные по численности части. В итоге у одной половины единиц совокупности значение признака больше медианного уровня, а у другой – меньше его.

Если изучаемый признак имеет дискретные значения, то особых сложностей при расчете моды и медианы не бывает. Если же данные о значениях признака Х представлены в виде упорядоченных интервалов его изменения (интервальных рядов), расчет моды и медианы несколько усложняется. Поскольку медианное значение делит всю совокупность на две равные по численности части, оно оказывается в каком-то из интервалов признака X. С помощью интерполяции в этом медианном интервале находят значение медианы:

, (1.20)

где XMe – нижняя граница медианного интервала;

∆ X – его величина (размах);

∑ f/2 – половина от общего числа величин;

– сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала;

fMe – число наблюдений или объем взвешивающего признака в медианном интервале.

При расчете модального значения признака по данным интервального ряда надо обращать внимание на то, чтобы интервалы были одинаковыми, поскольку от этого зависит показатель повторяемости значений признака X. Для интервального ряда с равными интервалами величина моды определяется как

, (1.21)

где ХMo – нижнее значение модального интервала;

fMo – число наблюдений или объем взвешивающего признака в модальном интервале;

fMo-1 – то же для интервала, предшествующего модальному;

fMo+1 – то же для интервала, следующего за модальным;

∆ X – величина интервала изменения признака в группах.

Очевидно, что в формуле (1.20) и (1.21) можно заменить частоты f на доли d, так как , а можно вынести за скобки как в числителе, так и в знаменателе и сократить.

Показателями типа медианы, характеризующими структуру рядов распределения признака, являются квартили (делят ряд на 4 равные части), квинтили (на 5), децили (на 10), перцентили (на 100).


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 771; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.026 с.)
Главная | Случайная страница | Обратная связь