Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Понятие о статистических индексах, их классификация



Индекс — относительная величина, показывающая, во сколько раз уровень изучаемого явления в данных условиях отличается от уровня того же явления в других условиях. В статистическом анализе индексы используются не только для со­поставления уровней явлений, но и для установления значимости при­чин, вызывающих их изменение.

Если анализируются простые явления или не имеет значения струк­тура сложных явлений, то применяются индивидуальные индексы. На­пример, такие простые явления как количество проданного товара q и его цена р своим произведением образуют такое сложное явление, как выручка от продаж Q=qp. Сравнение их значений по отдельности для конкретного товара в отчетном периоде времени относительно ка­кого-либо базисного периода и дает индивидуальные индексы:

—количества товара iq = q1 /q0 ;

—его цены ip = p1/p0 ;

—выручки от продаж iQ = Q1 /Q0.

Очевидно, что индивидуальный индекс сложного явления формиру­ется из таких индексов простых его составляющих по типологической формуле его определения. То есть

iQ=iqip (1.64)

Подставив сюда индивидуальный индекс выручки, записываем: Q1/Q0= iqip

откуда получаем, что

Q1= iqipQ0 (1.65)

Формула (1.65) представляет собой двухфакторную мультиплика­тивную модель сложного явления, позволяющую находить его измене­ние под влиянием каждого фактора в отдельности.

Мультипликативной она называется потому, что содержит только действие умножения. Если в формуле только сложение, или вычитание, или оба этих действия, то она называется аддитивной моделью. Если в формуле только деление, то она называется кратной моделью. Если в формуле сложение и вычитание с умножением и делением в любом со­четании, то она называется смешанной моделью.

Общее изменение выручки равняется =Q1-Q0, а ее измене­ние от каждого фактора определяется следующим образом. От измене­ния количества товара при постоянной цене (ip = 1) оно равно

q= iqQ0 - Q0 = (iq –1) Q0, (1.66)

а при изменении еще и цены оно будет равным

p= Q1 - Q0 - q = iqipQ0 - Q0 - (iq –1) Q0= iq(ip –1) Q0, (1.67)

Так, если выручка от продаж возросла с Q0 = 8 млн. руб. в предыдущем периоде до Q1 =12, 18 млн. руб. в последующем при увеличении количества проданного товара на 5% (iq =1, 05) и повышении цены на 45% (ip =1, 45), то можно по формуле (1.54) записать, что

Q1 = 1, 05*1, 45*8 = 12, 18 млн. руб.

При этом весь прирост выручки в сумме = 12, 18-8=4, 18 млн. руб. вызван увеличением обоих факторов. За счет изменения количества проданного товара он по формуле (1.66) составил q=(1, 05-1)8=0, 4 млн. руб., а за счет изменения цены по формуле (1.67) равняется p=1, 05(1, 45-1)8 =3, 78 млн. руб. Для контроля отмечаем, что сумма факторных изменений выручки равна общему: 0, 4+3, 78=4, 18 млн. руб.

Формулы (1.66) и (1.67) получены исходя из того, что в основной формуле выручки количество товара - первый фактор, а цена - второй. Если эти факторы поменять местами, то выручка и ее общее изменение останутся прежними, но изменения от каждого фактора будут другими.

Так, если основываться на формуле выручки вида Q = pq, то ее изменение за счет цены, как первого фактора, по аналогии с формулой (1.66) будет равняться

p = (ip –1) Q0 , (1.68)

Изменение выручки за счет количества товара, как второго фактора, по аналогии с формулой (1.67) определится по выражению

q= ip(iq –1) Q0. (1.69)

Суммарное по факторам изменение выручки по-прежнему равняется ее общему изменению.

В рассмотренном примере, считая цену первым фактором и приме­няя формулу (1.68), определяем, что изменение выручки за счет повы­шения цены равняется

p = (1, 45-1)8 = 3, 6 млн. руб.

Изменение выручки за счет увеличения количества проданного то­вара, как второго фактора, по формуле (1.69) равно

q = 1, 45(1, 05-1)8 = 0, 58 млн. руб.

Общее изменение выручки осталось прежним: 3, 6+0, 58=4, 18 млн. руб.

В связи с различными факторными изменениями выручки в зависи­мости от места фактора в ее основной формуле, встает вопрос, какую же формулу выручки применять для анализа. Это зависит от конкретной экономической ситуации. Если увеличение выручки обеспечивается главным образом за счет роста количества проданного товара при более или менее стабильной цене, то товар считается первым фактором, а цена — вторым. Если же увеличение выручки достигается в основном повы­шением цен без увеличения и даже при снижении количества проданно­го товара, то цена считается первым фактором, а товар — вторым.

Значит, очередность анализа по факторам вытекает из вида формулы сложного явления. Так, если материальные затраты М на выпуск про­дукции определяются как произведение ее количества q, удельного расхода материала т и его цены р, то типологическая формула имеет вид

М = qmp, (1.70)

а трехфакторная мультипликативная модель запишется как

M1=iqimipM0.(1.71)

Следовательно, можно записать следующие формулы факторных изменений материальных затрат

Меняя факторы местами в основной формуле (1.70), можно получать другие факторные формулы. Но всегда общее изменение материальных затрат, равное сумме факторных изменений, будет одинаковым.

Подобные мультипликативные модели можно формировать для не­ограниченного числа факторов.

Простые общие индексы. Индекс становится общим, когда в основной формуле показывается неоднородность изучаемого явления. Например, анализируется изменение выручки от продаж не одного, а всех или нескольких видов товаров. Тогда общий индекс количества проданных товаров будет равен

= (1.72)

Аналогично по ценам = (1.73)

Аналогично по выручке = = (1.74)

Однако здесь двухфакторная мультипликативная модель не может выглядеть как в случае индивидуальных индексов, потому что произве­дение простых общих индексов количества товаров и цен не равно об­щему индексу выручки. То есть и убеждаемся в этом нера­венстве, подставив значения общих индексов из формул (1.72)—(1.74).

В самом деле:

Как видим, в числителе и знаменателе левой части произведения сумм, а в числителе и знаменателе правой части сумма произведений и они, конечно, не адекватны.

Это вызвано тем, что записанные выше общие индексы простых яв­лений не отражают взаимосвязи между собой в сложном явлении и по­тому считаются не объективными. Поэтому они помечены штрихом и названы простыми общими индексами.

Агрегатные общие индексы. Объективность общим индексам придает их запись в агрегатном ви­де, предложенная испанцем Ласпейресом и немцем Пааше.

Агрегатный общий индекс Ласпейреса для количества товаров как первого фактора выручки определяется по формуле

= (1.75)

Аналогично можно записать агрегатный общий индекс Ласпейреса для цен как первого фактора выручки, то есть

= (1.76)

В формулах Ласпейреса знаменатели по существу одинаковые, пред­ставляя собой выручку базисного периода, а числители разные. В фор­муле (1.75) это отчетная выручка в базисных ценах (количесгво товаров отчетное, а цены — базисные), в формуле (1.76) наоборот — базисная выручка в отчетных ценах (цены отчетные, а количество товаров — ба­зисное).

Агрегатные общие индексы Пааше применяются ко вторым факто­рам мультипликативных моделей. Поэтому такой индекс для цен как второго фактора выручки определяется по формуле

= (1.77)

Аналогично можно записать агрегатный общий индекс Пааше для количества товаров как второго фактора выручки, то есть

= (1.78)

В формулах Пааше числители по существу одинаковые, представляя собой выручку отчетного периода, а знаменатели аналогичны числите­лям формул Ласпейреса.

Для облегчения запоминания студентами формул Ласпейреса и Пааше предлагаю обратить внимание на букву «ш» в слове «Пааше», которая напоминает «111» - так обозначены отчетные периоды в общей формуле (две единицы – в числителе, а одна – в знаменателе). В формуле же Ласпейреса – три нуля (наоборот к формуле Пааше).

Произведения количественного индекса Ласпейреса и ценового ин­декса Пааше, а также ценового индекса Ласпейреса и количественного индекса Пааше дают общий индекс выручки.

Однако вид этих формул показывает, что однофакторные индексы Ласпейреса и Пааше не равны между собой. То есть не равными явля­ются количественные индексы Ласпейреса и Пааше и ценовые. Амери­канский экономист Гершенкрон обширными расчетами установил, что по одному и тому же фактору индекс Ласпейреса всегда больше индекса Пааше и это открытие названо эффектом Гершенкрона.

Но в статистике должно быть одно значение индекса, поэтому аме­риканский экономист Фишер предложил применять среднюю геометри­ческую величину из индексов Ласпейреса и Пааше, определяя ее по формулам:

для количества товаров = (1.79)

для цен = (1.80)

Вместе с тем, проведенные Ворониным В.Ф. многочисленные расчеты показали, что для целей статистики вполне можно применять не среднюю геомет­рическую, а простую среднюю арифметическую величину из индексов Ласпейреса и Пааше, определяя ее по формулам:

для количества товаров = (1.81)

для цен = (1.82)

Например, если индекс Ласпейреса 1, 8 и индекс Пааше 1, 4, то сред­ний геометрический индекс по предложению Фишера равняется

IФ= =1, 59,

а средний арифметический индекс по нашему предложению составит

IВ=(1, 8+1, 4)/2 = 1, 60.

Как видим, разница очень незначительная. Но при этом важно во всехпериодах времени постоянно пользоваться одной и той же средней величиной: или геометрической, или арифметической.

Общие индексы как средние из индивидуальных. Помимо записи общих индексов в агрегатном виде, на практике часто используют формулы их расчета как величин, средних из соответст­вующих индивидуальных индексов.

Используя их формулы, можем записывать, что q1 = q0iq и p1 = p0ip, а также, что q0 =q1/iq и р01/ip. Подставив от­четные значения количества товара и цены в формулу общего индекса выручки, получим

IQ= = = . (1.83)

Значит, общий индекс выручки можно определять только через ее базисные значения сумножением в числителе на индивидуальный ин­декс выручки по конкретному товару.

Теперь подставим базисные значения количества товара и цены в формулу общего индекса выручки. Тогда получим

IQ = . (1.84)

Значит, общий индекс выручки можно определять только через ее отчетные значения с делением в знаменателе на индивидуальный ин­декс выручки по конкретному товару.

Аналогично через индивидуальные индексы количества товара и це­ны можно выразить агрегатные общие индексы Ласпейреса и Пааше.

Индекс структурных сдвигов. Выше изложенные общие индексы применимы к изучению явлений, образованных как разными, так и однородными процессами. В послед­нем случае динамику итога можно показать через простые общие ин­дексы отдельных факторов.

Для доказательства в формуле количественного индекса Ласпейреса числитель умножим и разделим на , а знаменатель – на . Тогда будем иметь

= = = ,

где = - простой общий индекс количества товаров;

= – доля или удельный вес конкретного товара в общем количестве;

= - агрегатный общий индекс структуры, доли или удельного веса, часто называемый индексом структурных сдвигов.

Следовательно, количественный индекс Ласпейреса равняется про­изведению простого общего индекса количества товаров и индекса структурных сдвигов. То есть

= , (1.85)

откуда для определения индекса структурных сдвигов получается до­вольно простая формула

= / . (1.86)

Используя формулу (1.83) в двухфакторной модели общего индекса выручки, получим его трехфакторную мультипликативную модель вида

IQ = = . (1.87)

Трехфакторная модель возможна к широкому применению в эконо­мическом анализе для установления количественного влияния каждого фактора на вариацию сложного явления.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 506; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.041 с.)
Главная | Случайная страница | Обратная связь