Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Порядковые /структурные/ средние: мода и медиана.
Кроме степенных средних в статистике для относительной характеристики величины варьирующего признака и внутреннего строения рядов распределения пользуются структурными средними, которые представлены, в основном, модой и медианой. Мода — это наиболее часто встречающийся вариант ряда. Мода применяется, например, при определении размера одежды, обуви, пользующейся наибольшим спросом у покупателей. Модой для дискретного ряда является варианта, обладающая наибольшей частотой. При вычислении моды для интервального вариационного ряда необходимо сначала определить модальный интервал (по максимальной частоте), а затем — значение модальной величины признака по формуле: где: · — значение моды · — нижняя граница модального интервала · — величина интервала — частота модального интервала · — частота интервала, предшествующего модальному · — частота интервала, следующего за модальным Медиана — это значение признака, которое лежит в основе ранжированного ряда и делит этот ряд на две равные по численности части. Для определения медианы в дискретном ряду при наличии частот сначала вычисляют полусумму частот , а затем определяют, какое значение варианта приходится на нее. (Если отсортированный ряд содержит нечетное число признаков, то номер медианы вычисляют по формуле в случае четного числа признаков медиана будет равна средней из двух признаков находящихся в середине ряда). При вычислении медианы для интервального вариационного ряда сначала определяют медианный интервал, в пределах которого находится медиана, а затем — значение медианы по формуле: где: · — искомая медиана · — нижняя граница интервала, который содержит медиану · — величина интервала · — сумма частот или число членов ряда · - сумма накопленных частот интервалов, предшествующих медианному · — частота медианного интервала 31.Вариация признаков, причины возникновения, необходимость измерения. Вариация — это различия индивидуальных значений признака у единиц изучаемой совокупности. Исследование вариации имеет большое практическое значение и является необходимым звеном в экономическом анализе. Необходимость изучения вариации связана с тем, что средняя, являясь равнодействующей, выполняет свою основную задачу с разной степенью точности: чем меньше различия индивидуальных значений признака, подлежащих осреднению, тем однороднее совокупность, а, следовательно, точнее и надежнее средняя, и наоборот. Следовательно по степени вариации можно судить о границах вариации признака, однородности совокупности по данному признаку, типичности средней, взаимосвязи факторов, определяющих вариацию.Причиной возникновения вариации являются различные условия существования разных единиц совокупности. Изменение вариации признака в совокупности осуществляется с помощью абсолютных и относительных показателей. Абсолютные показатели вариации включают: · размах вариации
· среднее линейное отклонение
· дисперсию
· среднее квадратическое отклонение Относительные показатели вариации включают: · Коэффициент осцилляции · Относительное линейное отклонение (линейный коэффициент варианции) · Коэффициент вариации (относительное отклонение)
Показатели вариации Вариация — это различия индивидуальных значений признака у единиц изучаемой совокупности. Исследование вариации имеет большое практическое значение и является необходимым звеном в экономическом анализе. Необходимость изучения вариации связана с тем, что средняя, являясь равнодействующей, выполняет свою основную задачу с разной степенью точности: чем меньше различия индивидуальных значений признака, подлежащих осреднению, тем однороднее совокупность, а, следовательно, точнее и надежнее средняя, и наоборот. Следовательно по степени вариации можно судить о границах вариации признака, однородности совокупности по данному признаку, типичности средней, взаимосвязи факторов, определяющих вариацию. Изменение вариации признака в совокупности осуществляется с помощью абсолютных и относительных показателей. Абсолютные показатели вариации включают:
· размах вариации
· среднее линейное отклонение
· дисперсию
· среднее квадратическое отклонение Размах вариации — это разность между максимальным и минимальным значениями признака Он показывает пределы, в которых изменяется величина признака в изучаемой совокупности. Среднее линейное отклонение — это средняя арифметическая из абсолютных отклонений отдельных значений признака от средней. Дисперсия - представляет собой средний квадрат отклонений индивидуальных значений признака от их средней величины. Относительные показатели вариации включают: · Коэффициент осцилляции · Относительное линейное отклонение (линейный коэффициент варианции) Коэффициент вариации (относительное отклонение) Сравнение вариации нескольких совокупностей по одному и тому же признаку, а тем более по различным признакам с помощью абсолютных показателей не представляется возможным. В этих случаях для сравнительной оценки степени различия строят относительные показатели вариации. Популярное:
|
Последнее изменение этой страницы: 2016-08-24; Просмотров: 651; Нарушение авторского права страницы