Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Мода и медиана, их смысл и значение в социально-экономических исследованиях, способы вычисления.



Мода — это наиболее часто встречающийся вариант ряда. Мода применяется, например, при определении размера одежды, обуви, пользующейся наибольшим спросом у покупателей. Модой для дискретного ряда является варианта, обладающая наибольшей частотой. При вычислении моды для интервального вариационного ряда необходимо сначала определить модальный интервал (по максимальной частоте), а затем — значение модальной величины признака по формуле:

где:

§ — значение моды

§ — нижняя граница модального интервала

§ — величина интервала

§ — частота модального интервала

§ — частота интервала, предшествующего модальному

§ — частота интервала, следующего за модальным

Медиана — это значение признака, которое лежит в основе ранжированного ряда и делит этот ряд на две равные по численности части.

Для определения медианы в дискретном ряду при наличии частот сначала вычисляют полусумму частот , а затем определяют, какое значение варианта приходится на нее. (Если отсортированный ряд содержит нечетное число признаков, то номер медианы вычисляют по формуле:

Ме = (n(число признаков в совокупности) + 1)/2,

в случае четного числа признаков медиана будет равна средней из двух признаков находящихся в середине ряда).

При вычислении медианы для интервального вариационного ряда сначала определяют медианный интервал, в пределах которого находится медиана, а затем — значение медианы по формуле:

где:

§ — искомая медиана

§ — нижняя граница интервала, который содержит медиану

§ — величина интервала

§ — сумма частот или число членов ряда

§ - сумма накопленных частот интервалов, предшествующих медианному

§ — частота медианного интервала

Пример. Найти моду и медиану.

Возрастные группы Число студентов Сумма накопленных частот Σ S
До 20 лет
20 — 25
25 — 30
30 — 35
35 — 40
40 — 45
45 лет и более
Итого  

Решение:
В данном примере модальный интервал находится в пределах возрастной группы 25-30 лет, так как на этот интервал приходится наибольшая частота (1054).

Рассчитаем величину моды:

Это значит что модальный возраст студентов равен 27 годам.

Вычислим медиану. Медианный интервал находится в возрастной группе 25-30 лет, так как в пределах этого интервала расположена варианта, которая делит совокупность на две равные части (Σ fi/2 = 3462/2 = 1731). Далее подставляем в формулу необходимые числовые данные и получаем значение медианы:

Это значит что одна половина студентов имеет возраст до 27, 4 года, а другая свыше 27, 4 года.

Кроме моды и медианы могут быть использованы такие показатели, как квартили, делящие ранжированный ряд на 4 равные части, децили -10 частей и перцентили — на 100 частей.

 

 

Статистическое изучение вариации. Показатели вариации и методы их расчета.

Вариация — это различия индивидуальных значений признака у единиц изучаемой совокупности. Исследование вариации имеет большое практическое значение и является необходимым звеном в экономическом анализе. Необходимость изучения вариации связана с тем, что средняя, являясь равнодействующей, выполняет свою основную задачу с разной степенью точности: чем меньше различия индивидуальных значений признака, подлежащих осреднению, тем однороднее совокупность, а, следовательно, точнее и надежнее средняя, и наоборот. Следовательно по степени вариации можно судить о границах вариации признака, однородности совокупности по данному признаку, типичности средней, взаимосвязи факторов, определяющих вариацию.

Изменение вариации признака в совокупности осуществляется с помощью абсолютных и относительных показателей.

Абсолютные показатели вариации включают:

§ размах вариации

§ среднее линейное отклонение

§ дисперсию

§ среднее квадратическое отклонение

Размах вариации (R)

Размах вариации — это разность между максимальным и минимальным значениями признака

Он показывает пределы, в которых изменяется величина признака в изучаемой совокупности.

Пример

Опыт работы у пяти претендентов на предшествующей работе составляет: 2, 3, 4, 7 и 9 лет.
Решение: размах вариации = 9 — 2 = 7 лет.

Для обобщенной характеристики различий в значениях признака вычисляют средние показатели вариации, основанные на учете отклонений от средней арифметической. За отклонение от средней принимается разность .

При этом во избежании превращения в нуль суммы отклонений вариантов признака от средней (нулевое свойство средней) приходится либо не учитывать знаки отклонения, то есть брать эту сумму по модулю , либо возводить значения отклонений в квадрат


Поделиться:



Популярное:

  1. II. Оно верно а другом смысле.
  2. III. Восточно-Европейские транспортные коридоры и мультимодальные коридоры
  3. Аналитические показатели рядов динамики. Методика расчетов и экономический смысл.
  4. Биологические, социальные и экзистенциальные (проблемы смысла жизни, смерти, бессмертия) аспекты человеческой жизни.
  5. Богословский смысл непорочного зачатия
  6. Богословский смысл сотворения человека
  7. Богословский язык и верификационный анализ: обвинение в отсутствии смысла
  8. В социально-экономических системах
  9. В чем смысл логоса и хаоса как полярных категорий
  10. Встречи с умершими. Смысл встреч с умершими
  11. Глава 11. Статистические методы изучения взаимосвязей социально-экономических явлений
  12. Греческая мифология представляет из себя первобытную попытку осмыслить действительность, придать всей природной картине целесообразность и стройность, расширить жизненный опыт.


Последнее изменение этой страницы: 2016-08-24; Просмотров: 1178; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь