Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Органические соединения, содержащие кислород
Гидроксилсодержащие соединения
Введение гидроксильной группы в молекулу органического соединения приводит к появлению полос поглощения, связанных с колебаниями связей С – О и О – Н. Наиболее характерные полосы поглощения появляются в области 3600 - 3000 см –1 (валентные колебания О–Н группы) и 1400 - 1000 см–1 (колебания, связанные с группировкой С – О – Н). Валентные колебания О – Н являются характеристическими, поскольку в них принимает участие легкий атом водорода. Они наблюдаются в широком интервале частот (3600 - 2500 см –1), что связано со способностью гидроксильной группы образовывать водородные связи. Образование водородной связи влияет на положение и форму валентных колебаний ОН. Свободная, неассоциированная гидроксильная группа спиртов и фенолов имеет узкую полосу поглощения в области 3670 - 3580 см –1. Эта полоса обычно наблюдается в разбавленных растворах гидроксил-содержащих соединений в инертных растворителях. Идентификация полос свободной ОН-группы не вызывает затруднений, так как другие основные колебания не дают полос в этой области, а интенсивность обертонов намного ниже. Участие гидроксильной группы в образовании межмолекулярных водородных связей проявляется в смещении полосы поглощения в сторону меньших частот и значительном увеличении ее интенсивности. Образование водородных связей между молекулами спирта приводит к появлению димеров и полиассоциатов. Для димеров характерно возникновение резкой полосы поглощения в области 3550 - 3450 см –1, в спектре полиассоциатов наблюдается широкая полоса в при 3400 - 3200 см –1. Характерным признаком межмолекулярных водородных связей является изменение характера спектра в области 3600 - 3200 см –1 при изменении концентрации гидроксилсодеращего соединения в инертном растворителе. При малых концентрациях вещества в спектре имеется узкая полоса поглощения, отвечающая свободной гидроксильной группе. Увеличение концентрации приводит к появлению димеров и полиас-социатов, и в спектре, наряду с полосой свободной ОН-группы, появляется поглощение в более длинноволновой области. Дальнейшее увеличение концентрации сопровождается возрастанием интенсивности поглощения полосы связанной ОН-группы и уменьшением интенсивности полосы свободной гидроксильной группы. Образование межмолекулярных водородных связей с полярными соединениями, такими как эфиры, кетоны, амины и др., сопровождается смещением полосы nОН в область 3550 - 3450 см –1. Одновременно наблюдается и небольшое смещение полос поглощения группы донора электронов (на 10 - 20 см –1) в низкочастотную область. Участие ОН-групп во внутримолекулярной водородной связи приводит к появлению узкой полосы поглощения в области 3590-3420 см–. Водородная связь хелатного типа проявляется в виде очень широкой размытой полосы поглощения при 3200-2500 см–1. В отличие от межмолекулярных водородных связей, характер поглощения соединений с внутримолекулярной водородной связью в инертных растворителях не зависит от концентрации. Таким образом, ИК-спектры в области позволяет определить характер водородной связи. Наличие полярной связи С – О вызывает появление интенсивной полосы поглощения в интервале 1200-1000 см–1, обусловленной участием этой группы в скелетных колебаниях. Кроме того, в области 1400-1250 см–1 появляются интенсивные полосы поглощения, связанные с плоскими деформационными колебаниями ОН-группы. Имеются публикации, согласно которым можно различать первич-ные, вторичные, третичные спирты и фенолы по положению полос поглощения в области 1400 - 1000 см–1, однако для целей структурного анализа эти данные надо использовать осторожно. Простые эфиры
Колебания группы С – О – С простых эфиров не характеристичны. Однако в области 1200-1000 см –1 у простых эфиров появляется интенсивная полоса поглощения, связанная с участием в колебании полярной связи С – О – С. Положение этой полосы непостоянно, зависит от структуры эфира: так, в циклических эфирах эта полоса расположена в области 1150 - 1060 см–1, а у ароматических и непредельных эфиров она наблюдается в области 1270-1200 см–1. Простая эфирная связь не может быть однозначно доказана по ИК-спектрам поглощения. Введение кислорода сказывается на положении полос поглощения метильных и метиленовых групп, непосредственно связанных с атомом кислорода. Так, полоса симметричных валентных колебаний метильной группы алифатических эфиров (ROCH3) смещается до 2830 - 2815 см–1. В ароматических эфирах (АгОСН3) полосы поглощения СН3-группы наблюдаются при 2850 см–1. Валентные колебания С – Н-связей при эпоксидном кольце проявляются при 3050-2990 см–1, колебания СН в a, b-непредельных эфирах – при 3150-3050 см –1. 8.1.6. Органические соединения, содержащие
Спектры всех типов карбонильных соединений характеризуются интенсивным поглощением (e = 300-2000) в области 1900-1580 см–1, обусловленным характеристическими колебаниями с участием С = О группы. На положение и интенсивность полос поглощения С = О влияет в первую очередь структура (геометрия; массы атомов, связанных с карбонильной группой; индукционные и мезомерные эффекты, стерические факторы). Кроме того, на частоту С = О влияют агрегатное состояние и растворитель (образование водородных связей или электро-статическое взаимодействие). Смещения, происходящие при этом, обычно меньше сдвигов, наблюдаемых под влиянием структурных факторов. Высокая чувствительность карбонильного поглощения к изменению ближайшего окружения связана с тем, что это - групповое колебание, в котором, наряду с колебаниями связи С = О, принимают весьма сущест-венное участие прилежащие углы и связи. Для отдельных классов карбонильных соединений частоты поглощения nС = О находятся в узком интервале, вследствие чего по положению этой полосы можно сделать заключение о типе карбонильного соединения. Для простейшего карбонилсодержащего соединения – муравьиного альдегида – колебание, связанное с С = О группой, проявляется при 1745 см–1. Алифатические альдегиды
В алифатических альдегидах поглощение карбонильной группы находится в интервале 1740 - 1720 см –1. В газообразном состоянии частота nС = О повышается: например, nС = О ацетальдегида в парах равна 1752, а для пропионового альдегида – 1757 см –1. Насыщенные кетоны
В насыщенных кетонах с открытой цепью частота карбонильной группы наблюдается в интервале 1725 - 1705 см –1. Как и для альдегидов, nС = О в парах повышается примерно на 20 см–1. Для ацетона, например nС = О в парах 1742 см –1, а в растворах – 1728 -1718 см –1, в зависимости от растворителя. Карбоновые кислоты
В карбоновых кислотах частота колебаний nС = О увеличивается: в парообразном состоянии или в разбавленных растворах (в неполярных растворителях) nС = О наблюдается в области 1790-1770 см –1. Обычно наблюдаемое поглощение жидких карбоновых кислот в области 1720-1700 см–1 принадлежит колебаниям карбонильной группы димера. В твердом состоянии, когда ассоциация еще сильнее, полоса поглощения карбонильной группы смещена примерно на 30 см–1 в длинноволновую область. Поглощение nС = О карбоновых кислот в жидком и твердом состоянии лежит почти в той же спектральной области, что и у кетонов и альдегидов. Кислоты могут быть идентифицированы по значительно большей интенсивности полосы С = О (e = 1500 вместо e = 300-600 у кетонов) и по поглощению в других областях спектра. Так, для карбоновых кислот характерно поглощение, вызванное валентными колебаниями гидроксильной группы. В мономерах оно проявляется при 3550 см –1, в димерах, благодаря сильной межмолекулярной связи, наблюдается группа перекрывающихся полос в области 3000 - 2500 см –1. В карбоновых кислотах также проявляется интенсивное поглощение в области 1420 - 1200 см –1, вызванное деформационными колебаниями О – Н и валентными колебаниями С – О. Положение этих полос меняется, но может быть определено по высокой интенсивности поглощения. Сложные эфиры
Для сложных эфиров поглощение карбонильной группы наблюдается при 1750-1735 см –1. Это значение nС = О выше наблюдаемых величин nС = О соответствующих ассоциированных карбоновых кислот, но ниже nС = О мономеров кислот. Так же, как и для кислот, в спектрах эфиров в области 1300 -1050 см –1 появляются одна или несколько интенсивных полос, вызванных колебаниями с участием С – О – С эфирной связи (так называемая " эфирная полоса" ). Идентифицируется это поглощение по высокой интенсивности, и, как правило, " эфирная полоса" сильнее карбонильной, она более широкая и иногда расщепляется. Галогенангидриды кислот и хлоркарбонаты имеют очень высокие значения частот колебаний карбонильной группы: 1815 - 1770 см –1 для галогенангидридов кислот и 1790 - 1770 см –1 для хлоркарбонатов. Анионы карбоновых кислот
Анионы карбоновых кислот характеризуются двумя интенсив-ными полосами поглощения (при 1680 – 1610 см –1 и 1400 - 1300 Частота колебаний карбонильной группы данного типа соединений практически не зависит от строения алкильного радикала. Заместители в углеводородном радикале также не оказывает существенного влияния на частоту nС=О, если они не находятся в a -положении к карбонильной группе. Карбонильная группа меняет частоты колебаний соседних алкильных групп. Так, частота деформационных колебаний метильной группы в кетонах смещена до 1360 - 1355 см –1, в метиловых эфирах карбоновых кислот она находится при 1440 - 1435 см –1 (das) и 1365 - 1356 см –1 (ds), деформационные колебания метиленовой группы – СН2 – СО – также смещаются до 1440 - 1400 см –1. Если кратная связь не сопряжена с карбонильной группой, то взаимное влияние отсутствует, однако нужно иметь в виду, что интенсивная карбонильная полоса может маскировать более слабую полосу двойной связи. В ненапряженных циклах частота карбонильной группы сохраняет значение, характерное для соответствующих ненасыщенных соединений с открытой цепью. Напряжение цикла вызывает повышение частоты nС = О: например, для циклогексанонов она находится примерно при 1720 - 1700 см –1, для циклопентанонов – при 1750 - 1740 см –1, для циклобутанона около 1775 см –1. Аналогичная картина наблюдается в сложных эфирах: для d-лактонов частота колебаний С = О находится при 1750 - 1735 см –1, для g-лактонов – в пределах 1780 - 1760 см –1. Введение в карбонильные соединения галогена к a-углеродному атому повышает частоту колебаний карбонильной группы:
Сопряжение карбонильной группы с кратными связями снижает частоту колебания nС = О для всех типов карбонильных соединений на 20 - 30 см –1. Так, для a, b-ненасыщенных альдегидов nС = О находится в пределах 1705 - 1680 см –1, для a, b-ненасыщенных кетонов – 1685 - 1665 см –1, для сложных эфиров a, b-ненасыщенных кислот – 1730 - 1717 см –1, для a, b-непредельных g-лактонов – между 1760 и 1740 см –1. Аналогичное влияние оказывает и бензольное кольцо. Увеличение числа звеньев СН = СН в сопряженной цепи оказывает лишь незначительное влияние на положение полосы поглощения карбонильной группы. Под влиянием карбонильной группы положение и интенсивность полос поглощения двойной связи изменяются: частоты снижаются (1640 - 1600 см –1), интенсивность растет и становится сравнимой с интенсивностью полосы поглощения nС=О. Несмотря на то, что взаимодействие колебаний С = С и С = О, несомненно, существует, величина его такова, что в спектре различаются как полосы поглощения С = О колебаний, так С = С. Более высокая частота поглощения приписывается С = О - связи. Следует отметить, что для эфиров карбоновых кислот введение двойной связи в эфирную группировку существенно увеличивает частоту колебаний nС = О, и для фениловых и виниловых эфиров карбоновых кислот nС = О находится в области 1770 - 1745 см –1. Изменения, происходящие в области поглощения С = О групп при введении в молекулу второй карбонильной группы, зависят от их взаимного расположения. В a-дикарбонильных соединениях взаимодействие между соседними карбонильными группами очень слабое, изменение частоты колебаний не превышает 5 - 15 см –1. В g- и d-дикарбонильных соединениях не происходит существенного изменения в положении полос поглощения С = О групп. Для соединений, содержащих С = О - группы в b-положении, ИК-спектр определяется теми структурными превращениями, которые претер-певают данные соединения. Как известно, b-дикетоны и альдегиды могут существовать в енольной форме, имеющей сильную внутримолекулярную водородную связь. В хелатном кольце взаимодействие колебаний столь сильное, что не представляется возможным выделить отдельно частоты колебаний карбонильной группы и двойной связи. В области 3200 - 2700 см –1 наблюдается широкая размытая полоса, принадлежащая валентным колебаниям группы ОН. Аналогичная картина наблюдается для о-оксикарбонильных соединений ароматического ряда. Соединения, содержащие хелатное кольцо, легко образуют внутри-комплексные соединения с ионами металлов. Спектры этих соединений в области 1560-1500 см –1 имеют обычно две полосы поглощения, которые принадлежат колебаниям всей системы хелатного кольца. В b-дикарбоновых кислотах наблюдаются две широкие полосы поглощения С = О - групп. Так, малоновая кислота имеет поглощение при 1740 и 1710 см -1. Две полосы поглощения nС = О появляются также у ангидридов и пероксидов кислот. Значения частот поглощения для них выше, чем для других карбонилсодержащих соединений. Разница в положении двух полос поглощения зависит от типа соединений: ангидриды 1850-1800 см –1, 1790-1740см –1, Dn = 60см –1; пероксиды 1805-1780см –1, 1785-1755см –1, Dn = 26см –1; Полоса валентных колебаний карбонильной группы очень чувствительна к изменению физического состояния соединения. Обычно наибольшее значение частот nС = О наблюдается для соединений в парах, затем для растворов карбонильных соединений в неполярных или малополярных растворителях и, наконец, ещё меньшее значение частот nС = О бывает в растворах полярных растворителей. Наиболее низкие значения частот карбонильной группы бывают в твёрдом состоянии, где существен-ую роль играют межмолекулярные взаимодействия. Если карбонильная группа участвует в образовании межмолекулярных водородных связей, то частота nС = О снижается на 15 - 45 см –1.
Амиды кислот
Для первичных и вторичных амидов характерно поглощение в области N – H - валентных колебаний. В разбавленных растворах в неполярных растворителях первичные амиды имеют две полосы свободной аминогруппы: около 3500 и 3400 см –1. При ассоциации появляются две или несколько полос в области 3360-3180 см –1. Вторичные амиды имеют одну полосу поглощения свободной NH-группы в области 3440 - 3420 см –1 для цис-соединений и 3460-3440 см –1 для транс-соединений. В ассоциированных молекулах вторичных амидов имеются две полосы, одна из которых (3100 -3070 см –1) присутствует в цис- и в транс-изомере, другая характерна для каждого из изомеров: для цис- 3180 - 3140 см –1, для транс - 3330 - 3270 см –1. В области карбонильного поглощения амиды имеют две полосы, так называемые амид-I и амид-II. Первая из них находится в интервале 1690 - 1630 см –1 в спектрах разбавленных растворов первичных, вторичных и третичных амидов. Первичные и вторичные амиды бывают ассоцииро-ваны, вследствие чего в твердом состоянии первая амидная полоса может быть смещена на 30 - 40 см –1 в низкочастотную сторону. Эта полоса обусловлена сложным колебанием, в котором, кроме карбонильной группы, принимают большое участие связь С – N и углы C – C – O и C – N – C. Вторая амидная полоса проявляется в первичных и вторичных амидах и связана с деформационными колебаниями N – H. Расположена она в области 1620 - 1590 см –1 для первичных амидов и 1550 - 1510 – для вторичных (разбавленные растворы). При ассоциации частота второй амидной полосы повышается на 20-40 см –1. Популярное:
|
Последнее изменение этой страницы: 2016-08-24; Просмотров: 816; Нарушение авторского права страницы