Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Ферромагнетики и их свойства. Петля гистерезиса



Помимо рассмотренных двух классов веществ — диа- и парамагнетиков, называемых слабомагнитными веществами, существуют еще сильномагнитные вещества ферромагнетики — вещества, обладающие спонтанной намагниченностью, т. е. они намагниче­ны даже при отсутствии внешнего магнитного поля. К ферромагнетикам кроме основ­ного их представителя — железа (от него и идет название «ферромагнетизм») — относятся, например, кобальт, никель, гадолиний, их сплавы и соединения.

Ферромагнетики помимо способности сильно намагничиваться обладают еще и другими свойствами, существенно отличающими их от диа- и парамагнетиков. Если для слабомагнитных веществ зависимость J от Н линейна (см. (133.6) и рис. 192), то для ферромагнетиков эта зависимость, впервые изученная в 1878 г. методом баллистического гальванометра для железа русским физиком А.Г. Столетовым (1839—1896), является довольно сложной. По мере возрастания Ннамагниченность J сначала растет быстро, затем медленнее и, наконец, достигается так называемое магнитное насыщение Jнас, уже не зависящее от напряженности поля. Подобный характер зависимости J от Н можно объяснить тем, что по мере увеличения намагничивающего поля увеличивает­ся степень ориентации молекулярных магнитных моментов по полю, однако этот процесс начнет замедляться, когда остается все меньше и меньше неориентированных моментов, и, наконец, когда все моменты будут ориентированы по полю, дальнейшее увеличение J прекращается и наступает магнитное насыщение.

Магнитная индукция B= 0 (H+J) (см. (133.4)) в слабых полях растет быстро с ростом H вследствие увеличения J, а в сильных полях, поскольку второе слагаемое постоянно (J=Jнас), В растет с увеличением Н по линейному закону (рис. 193).

Существенная особенность ферромагнетиков — не только большие значения (на­пример, для железа — 5000, для сплава супермаллоя — 800 000! ), но и зависимость от Н (рис. 194). Вначале растет с увеличением Н, затем, достигая максимума, начинает уменьшаться, стремясь в случае сильных полей к 1 (=B/(0H) = 1 + J/H, поэтому при J = Jнас = const с ростом Н отношение J/H  0,   1).

Характерная особенность ферромагнетиков состоит также в том, что для них зависимость J от H (а следовательно, и В от Н) определяется предысторией намагничения ферромагнетика. Это явление получило название магнитного гистерезиса. Если намагнитить ферромагнетик до насыщения (точка 1, рис. 195), а затем начать уменьшать напряженность Н намагничивающего поля, то, как показывает опыт, уменьшение J описывается кривой 1—2, лежащей выше кривой 1—0. При Н = 0 J отличается от нуля, т. е. в ферромагнетике наблюдается остаточное намагничение Jос. С наличием остаточного намагничения связано существование постоянных магнитов. Намагничение обращается в нуль под действием поля Нс, имеющего направление, противоположное полю, вызвавшему намагничение. Напряженность Нс называется коэрцитивной силой.

При дальнейшем увеличении противоположного поля ферромагнетик перемагничивается (кривая 3—4), и при Н = –Hнас достигается насыщение (точка 4). Затем фер­ромагнетик можно опять размагнитить (кривая 4—5—6) и вновь перемагнитить до насыщения (кривая 67).

Таким образом, при действии на ферромагнетик переменного магнитного поля намагниченность J изменяется в соответствии с кривой 1234—5—6—1, которая называется петлей гистерезиса (от греч. «запаздывание»). Гистерезис приводит к тому, что намагничение ферромагнетика не является однозначной функцией Н, т.е. одному и тому же значению Н соответствует несколько значений J.

Различные ферромагнетики дают разные гистерезисные петли. Ферромагнетики с малой (в пределах от нескольких тысячных до 1—2 А/см) коэрцитивной силойНс (с узкой петлей гистерезиса) называются мягкими, с большой (от нескольких десятков до нескольких тысяч ампер на сантиметр) коэрцитивной силой (с широкой петлей гистерезиса) — жесткими. Величины Нс, Jос и max определяют применимость фер­ромагнетиков для тех или иных практических целей. Taк, жесткие ферромагнетики (например, углеродистые и вольфрамовые стали) применяются для изготовления постоянных магнитов, а мягкие (например, мягкое железо, сплав железа с никелем) — для изготовления сердечников трансформаторов.

Ферромагнетики обладают еще одной существенной особенностью: для каждого ферромагнетика имеется определенная температура, называемая точкой Кюри, при которой он теряет свои магнитные свойства. При нагревании образца выше точки Кюри ферромагнетик превращается в обычный парамагнетик. Переход вещества из ферромагнитного состояния в парамагнитное, происходящий в точке Кюри, не сопровождается поглощением или выделением теплоты, т.е. в точке Кюри происходит фазовый переход II рода.

Наконец, процесс намагничения ферромагнетиков сопровождается изменением его линейных размеров и объема. Это явление получило название магнитострикции. Величина и знак эффекта зависят от напряженности Н намагничивающего поля, от природы ферромагнетика и ориентации кристаллографических осей по отношению к полю.

 

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 1438; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.011 с.)
Главная | Случайная страница | Обратная связь