Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Дифракция Фраунгофера от щели.



Пусть в непрерывном экране есть щель: ширина щели AB=b, длина щели (перпендикулярно плоскости листа) . На щель падают параллельные лучи света. Для облегчения расчета считаем, что в плоскости щели АВ амплитуды и фазы падающих волн одинаковы. Разобьем щель на зоны Френеля так, чтобы оптическая разность хода между лучами, идущими от соседних зон, была равна .

Если на ширине щели укладывается четное число таких зон, то в точке ( побочный фокус линзы) будет наблюдаться минимум интенсивности, а если нечетное число зон, то максимум интенсивности: ; . Картина будет симметричной относительно главного фокуса точки . Знак плюс и минус соответствует углам, отсчитанным в ту или иную сторону.

Интенсивность света . Как видно из рис. центральный максимум по интенсивности превосходит все остальные. Рассмотрим влияние ширины щели.

Т.к. условие минимума имеет вид , отсюда Из этой формулы видно, что с увеличением ширины щели b положения минимумов сдвигаются к центру, центральный максимум становится резче.

При уменьшении ширины щели b вся картина расширяется, расплывается, центральная полоска тоже расширяется, захватывая все большую часть экрана, а интенсивность ее уменьшается.

Дифракция Фраунгофера на системе щелей.

Одномерная дифракционная решетка представляет собой систему из большого числа N одинаковых по ширине и параллельных друг другу щелей в экране, разделенных также одинаковыми по ширине непрозрачными промежутками. Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т.е. в дифракционной решетке осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей.

Обозначим: bширина щели решетки; а – расстояние между щелями; a+b=dпостоянная дифракционной решетки. Линза собирает все лучи, падающие на нее под одним углом и не вносит никакой дополнительной разности хода.

Пусть луч 1 падает на линзу под углом ( угол дифракции ). Световая волна, идущая под этим углом от щели, создает в точке максимум интенсивности. Второй луч, идущий от соседней щели под этим же углом , придет в ту же точку . Оба эти луча придут в фазе и будут усиливать друг друга, если оптическая разность хода будет равна mλ:

Условие максимума для дифракционной решетки будет иметь вид:

Максимумы, соответствующие этому условию, называются главными максимумами. Значение величины m, соответствующее тому или иному максимуму называется порядком дифракционного максимума.

В точке F0 всегда будет наблюдаться нулевой или центральный дифракционный максимум.

Так как свет, падающий на экран, проходит только через щели в дифракционной решетке, то условие минимума для щели и будет условием главного дифракционного минимума для решетки:

Конечно, при большом числе щелей, в точки экрана, соответствующие главным дифракционным минимумам, от некоторых щелей свет будет попадать и там будут образовываться побочные дифракционные максимумы и минимумы. Но их интенсивность, по сравнению с главными максимумами, мала (≈ 1/22).

При условии , волны, посылаемые каждой щелью, будут гаситься в результате интерференции и появятся дополнительные минимумы.

Количество щелей определяет световой поток через решетку. Чем их больше, тем большая энергия переносится волной через нее. Кроме того, чем больше число щелей, тем больше дополнительных минимумов помещается между соседними максимумами. Следовательно, максимумы будут более узкими и более интенсивными.

Из (9.4.3) видно, что угол дифракции пропорционален длине волны λ. Значит, дифракционная решетка разлагает белый свет на составляющие, причем отклоняет свет с большей длиной волны (красный) на больший угол (в отличие от призмы, где все происходит наоборот).

Дифракционная решетка.

Дифракционной решеткой называется последовательность из большого числа N одинаковых параллельных щелей. Ширина каждой щели равна b, расстояние между соседними щелями, которое называется периодом решетки, равно d. Расположим параллельно решетке собирательную линзу, в фокальной плоскости которой поставим экран. Выясним характер дифракционной картины, получающейся на экране при падении на решетку световой волны (для простоты будем считать, что волна падает на решетку нормально). Каждая из щелей даст на экране картину. Картины от всех щелей придутся на одно и то же место экрана (независимо от положения щели, центральный максимум лежит против центра линзы). Если бы колебания, приходящие в точку Р от различных щелей, были некогерентными, результирующая картина от N щелей отличалась бы от картины, создаваемой одной щелью лишь тем, что все интенсивности выросли бы в N раз. Однако, колебания от различных щелей являются в большей или меньшей степени когерентными; поэтому результирующая интенсивность будет отлична от ( - интенсивность, создаваемая одной щелью). Предполагая, что радиус когерентности (максимальное поперечное направлению распространению волны расстояние, на котором возможно проявление интерференции) падающей волны намного превышает длину решетки. Так что колебания от всех щелей можно считать когерентными друг относительно друга. В этом случае результирующее колебание в точке Р представляет собой сумму N колебаний с одинаковыми амплитудами , сдвинутых друг относительно друга по фазе на одну и ту же величину δ . Интенсивность при этих условиях равна: , где – интенсивность, создаваемая каждым из лучей в отдельности. Видно, что разность хода от соседних щелей равна Следов, разность фаз

Дифракционные спектры.

Дифракционный спектр – Распределение интенсивности на экране, получаемое вследствие дифракции (это явление приведено на нижнем рис.). Основная часть световой энергии сосредоточена в центральном максимуме. Сужение щели приводит к тому, что центральный максимум расплывается, а его яркость уменьшается (это, естественно, относится и к другим максимумам). Наоборот, чем щель шире ( b > λ ), тем картина ярче, но дифракционные полосы уже, а число самих полос больше. При b > > λ в центре получается резкое изображение источника света, т.е. имеет мет прямолинейное распространение света. Эта картина будет иметь место только для монохроматического света. При освещении щели белым светом, центральный максимум будет иметь место белой полоски, он общий для всех длин волн (при = 0 разность хода равна нулю для всех λ ).

 

Критерий разрешения Рэлея.

Изображения двух близлежащих одинаковых точечных источников или двух близлежащих спектральных линий с равными интенсивностями и одинаковыми симметричными контурами разрешимы (разделены для восприятия), если центральный максимум дифракционной картины от одного источника (линии) совпадает с первым минимумом дифракционной картины от другого. При выполнении критерии Релея интенсивность «провала» между максимумами составляет 80% интенсивности в максимуме, что является достаточным для раз- решения линий .Если критерий Релея нарушен, то наблюдается одна линия.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 1247; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.01 с.)
Главная | Случайная страница | Обратная связь