Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Расчет интерференционной картины от двух источников.



Расчет интерференционной картины для двух источников можно провести используя две узкие параллельные щели, расположенные достаточно близко друг к другу.

Щели и находятся на расстоянии d друг от друга и являются когерентными источниками света. Интерференция наблюдается в произвольной точке А экрана, параллельного обеим щелям и расположенного от них на расстоянии l, причем l> > d. Начало отсчета выбрано в точке О, симметричной относительно щелей. Интенсивность в любой точке А экрана, лежащей на расстоянии х от О, определяется оптической разностью хода (разностью оптических длин проходимых волнами путей).

Из рисунка имеем: откуда или . Из условия l> > d следует, что поэтому . Подставив найденное значение Δ в условия интерференционного максимума и минимума: и

 

, получим, что максимумы интенсивности будут наблюдаться при , а минимумы – при . Расстояние между двумя соседними максимумами (или минимумами) называемое шириной интерференционной полосы равно: . Δ x не зависит от порядка интерференции (величины m) и является постоянной для . Δ x обратно пропорционально d, след. при большом расстоянии между источниками, например, d l , отдельные полосы становятся неразличимыми. Из двух предпоследних формул следует так же, что интерференционная картина, создаваемая на экране двумя когерентными источниками света, представляет собой чередование светлых и темных полос, параллельных друг другу. Главный максимум, соответствующий m=0, проходит через точку О. Вверх и вниз от него, на равных расстояниях располагаются максимумы (минимумы) первого (m=1) и других порядков. Описанная картина справедлива только лишь при освещении монохроматическим светом. Если использовать белый свет, то интерференционные максимумы для каждой длины волны будут смещены друг относительно друга и иметь вид радужных полос. Только для m=0 максимумы всех длин волн совпадают, а в середине экрана будет наблюдаться белая полоса.

Пространственная и временная когерентность.

Любой монохроматический свет можно представить в виде совокупности сменяющих друг друга независимых гармонических цугов. Средняя продолжительность одного цуга называется временем когерентности. Когерентность существует только в пределах одного цуга, и время когерентности не может превышать время излучения, . Если волна распространяется в однородной среде, то фаза колебаний в определенной точке пространства сохраняется только в течении времени когерентности. За это время волна распространяется в вакууме на расстояние , называемое длиной когерентности. Отсюда следует, что наблюдение интерференции света возможно лишь при оптических разностях хода, меньших длины когерентности для используемого источника света. Чем ближе волна к монохроматической, тем меньше ширина спектра ее частот и больше ее время когерентности, а следовательно и длина когерентности. Когерентность колебаний, которые совершаются в одной и той же точке пространства, определяемая степенью монохроматичности волн, называется временной когерентностью. Наряду с временной когерентностью, для описания когерентных свойств волн в плоскости, перпендикулярной направлению их распространения, вводится понятие пространственной когерентности. Два источника, размеры которых позволяют (при необходимой степени монохроматичности света) наблюдать интерференцию, называются пространственно когерентными.

Оптическая длина пути.

Пусть разделение на две когерентные волны происходит в одной определенной точке О. До точки М, в которой наблюдается интерференционная картина, одна волна в результате преломления прошла путь , вторая – в среде – путь . Если в точке О фаза колебаний равна ω t , то в точке М первая волна возбудит колебание вторая волна – колебание где –фазовая скорость первой и второй волны. Произведение геометрической длины S пути световой волны в данной среде на показатель преломления этой среды называется оптической длиной волны L, a – разность оптических длин проходимых путей – оптическая разность хода. Если оптическая разность хода равна целому числу волн в вакууме , то и колебания, возбуждаемые в точке М обеими волнами, будут происходить в одинаковой фазе. Следовательно, это максимум. Если оптическая разность хода то и колебания, возбуждаемые в точке М обеими волнами, будут происходить в противофазе. Следовательно мин..

 


Поделиться:



Популярное:

  1. Cоучастие ст.32 УК РФ – умышленное совместное участие двух или более лиц в совершении умышленного преступления.
  2. VII. Сравнительная характеристика живописной техники и станковой картины постимпрессионизма, импрессионизма и неоимпрессионизма.
  3. Аксиома статики о равновесии системы двух сил. Аксиома параллелограмма сил.
  4. Активация Т-лимфоцинтов. Костимуляция. Модель двух сигналов. Анергия. Апоптоз
  5. Борьба двух начал в организации театрального дела в России
  6. В которой обсуждаются альтернативы люксиевым технологиям, а Джонатан снова оказывается меж двух огней
  7. Вопрос 22. Картины Васнецова по мотивам русского фольклора.
  8. Глава восемнадцатая Любовь с двух точек зрения
  9. Графический метод решения задачи линейного программирования для двух переменных.
  10. Двух-, трех-, четырехстопные размеры. Ямб и его разновидности. Хорей и его типы.
  11. Двухстепенный роторный вибрационный гироскоп.
  12. ДВУХУДАРНЫЕ КОМБИНАЦИИ ИЗ ПРЯМЫХ УДАРОВ


Последнее изменение этой страницы: 2016-08-24; Просмотров: 1672; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.008 с.)
Главная | Случайная страница | Обратная связь