Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Тема 9. Электрохимические процессыСтр 1 из 6Следующая ⇒
Тема 9. Электрохимические процессы Оглавление Тема 9. Электрохимические процессы.. 1 9.1. Основные понятия и определения. 1 9.1.1. История развития электрохимии. 2 9.1.2. Структура темы.. 6 9.2. Окислительно-восстановительные реакции. 7 9.2.1. Понятие окислителя и восстановителя. 7 9.2.2. Степень окисления. 7 9.2.3. Виды окислительно-восстановительных реакций. 8 9.2.4. Электронные и электронно-ионные уравнения. 9 9.2.5. Окислительно-восстановительный (red-ox) потенциал. 10 9.2.6. Условие самопроизвольного протекания red-ox процессов. 12 Контрольная работа 9.1. 19 9.3. Процессы в гальваническом элементе. 20 9.3.1. Гетерогенные электрохимические процессы с участием металлов. Представление о металлической связи. 20 9.3.2. Понятие об электродном потенциале, его образование в водных растворах элекролитов 20 9.3.3. Образование гальванического элемента. Электродвижущая сила (ЭДС) 22 9.3.4. Электроды сравнения 1-го рода. Стандартный водородный электрод. 23 9.3.5. Электроды сравнения 2-го рода. Хлорид-серебрянный электрод. 23 9.3.6. Определение электродных потенциалов металлов. 24 9.3.7. Стандартные значения электродных потенциалов металлов. Ряд «напряжений». 24 9.3.8. Уравнение Нернста. 25 9.3.9. Концентрационные гальванические элементы (КГЭ) 26 9.3.10. Условие образования гальванического элемента. 27 9.3.11. Поляризация в гальваническом элементе. 27 9.4. Коррозия металлов. 32 9.5. Электролиз. 33
9.1. Основные понятия и определения Процессы взаимного превращения химической и электрохимической форм энергии называют электрохимическими. Электрохи́ мия — раздел химической науки, в котором рассматриваются системы и межфазные границы при протекании через них электрического тока, исследуются процессы в проводниках, на электродах (из металлов или полупроводников, включая графит) и в ионных проводниках (электролитах). Электрохимия изучает процессы окисления и восстановления, протекающие на пространственно-разделённых электродах, перенос ионов и электронов. Прямой перенос заряда с молекулы на молекулу в электрохимии не рассматривается. Предметом электрохимических исследований также являются электролиты и устанавливающиеся в них равновесия. Многие химические реакции протекают лишь при подводе энергии извне. Часто их проводят в электролитических ячейках (электролизерах) на электродах, соединенных с внешним источником тока. Изучение этих реакций дает информацию о природе и свойствах различных веществ, а также позволяет получать с помощью электросинтеза новые химические соединения. Электрохимические процессы широко применяются в промышленности. В качестве примера можно привести производство хлора и алюминия, гальваностегию и электрическую экстракцию. Гальванические элементы, преобразующие химическую энергию в электрическую, составляют основу источников тока - батарей и аккумуляторов, а также топливных элементов. Электрохимия изучает и другие электрические явления: поведение ионов в растворах электролитов и прохождение тока через такие растворы; разделение ионов в электрическом поле (электрофорез); коррозию и пассивацию металлов; электрические эффекты в биологических системах (биоэлектрохимия); фотоэлектрохимические процессы (влияние света на электрохимические реакции в ячейках). http: //dic.academic.ru/dic.nsf/ Электрохимические процессы можно разделить на две основные группы:
http: //www.nirhtu.ru/external/onh/Lections/Electrochem/Electrohim.html
История развития электрохимии XVI—XVIII столетия
XVI столетие знаменуется началом исследования электричества. На протяжении 17 лет английский ученый Вильям Гильберт исследует магнетизм и, в некоторой степени, электричество. Его исследования оказали огромное влияние на развитие знаний о магнетизме и электричестве. Он стал известен как «Отец магнетизма». В 1663 г. немецкий физик Отто фон Герике создаёт первый электрический генератор, который вырабатывал статическое электричество благодаря трению. Генератор представлял собой стеклянный шар с рукояткой, покрытый толстым слоем серы. Шар раскручивался вручную и при трении о подушечки пальцев, образовывалась электрическая искра. Заряженный шар использовали в экспериментах по электричеству. В середине 18 столетия французский химик Шарль Франсуа Дюфе (Charles Franç ois de Cisternay du Fay) делает вывод о существовании двух видов статического электричества. Он высказывает мнение о том что электричество состоит из двух «флюидов»: положительного и отрицательного. В противовес этой теории Б. Франклин предполагает что статическое электричество состоит из одного «флюида», а заряд объясняется избытком или недостатком такого флюида.
Опыт Л. Гальвани. Большой толчок к развитию электрохимии положили опыты в 1771 г. итальянского анатома и физиолога Луиджи Гальвани (Luigi Galvani) с мышцами препарированной лягушки. Гальвани обнаружил, что при наложении на мышцы двух разных металлов, соединённых проводником, мышцы лягушки сокращаются. В 1791 гг. выходит его работа под названием «De Viribus Electricitatis in Motu Musculari Commentarius» («Трактат о силах электричества при мышечном движении») в котором Гальвани говорит о существовании «Животного электричества», которое активируется в мышцах и нервах, при наложении на них двух металлов. Эта работа стала сенсацией. Он верил, что эта новая сила была одной из форм электричества в дополнение к «природной» форме, образующейся при ударе молнии, вырабатываемой электрическим угрём, а также «не природной», искусственной, образующейся при трении (статическое электричество). Считается, что в работах Гальвани впервые появляется предположение о связи между химическими реакциями и электричеством. 1791 год считается «днём рождения» электрохимии. Многие учёные приняли теорию Гальвани, но А. Вольта (Alessandro Volta) был против неё. Вольта считает, что мышцы являются лишь проводниками электрического тока, но не являются его источником. Тогда Гальвани демонстрирует эксперимент, при котором мышцы сокращались при наложении на них одного металла, а также и без металла — при соединении бедренного нерва с мышцей. А. Вольта на протяжении 8 лет занимается изучением органов угрей и скатов, вырабатывающих электричество. Результатом его исследований стало изготовление в 1799 году первого химического источника тока — «Вольтова столба». Это был исключительно важный (задолго до появления генераторов) источник электрического тока, способствовавший появлению многих открытий, в частности, первое получение в 1808—1809 гг. английским учёным Гемфри Дэви (Humphry Davy) в чистом виде таких металлов как натрий, калий, барий, стронций, кальций и магний. XIX столетие В конце XVII ст. немецкий физик Вильгельм Риттер (Johann Wilhelm Ritter) пишет статью «Гальванизм» и создаёт простой аккумулятор. С У. Николсоном (англ.)) они проводят разложение воды на водород и кислород путём электролиза. Вскоре после этого В. Риттер разрабатывает процесс гальванопокрытия. Он замечает, что количество осаждаемого металла, а также образующегося кислорода, зависит от расстояния между электродами. К 1801 г. Риттер наблюдает термоэлектрический ток и поручает его исследование Томасу Зеебеку (Thomas Johann Seebeck). В 1820 г. Г. Х. Эрстед открывает магнитный эффект электрического тока, что было эпохальным открытием. Андре-Мари Ампер (André -Marie Ampè re) повторяет эксперимент Эрстеда и описывает его математически. В 1821 г. немецко-эстонский физик Т. Зеебек демонстрирует появление термоэлектрического потенциала в точке соединения двух разнородных металлов, при наличии разницы температуры в этой точке. В 1827 г. немецкий ученый Г. Ом (Ohm, Georg Simon) представляет свой закон в известной книге Die galvanische Kette, mathematisch bearbeitet" (гальваническая цепь, математическая обработка) и полностью описывает свою теорию электричества. В 1832 г. знаменитый английский физик Майкл Фарадей (Michael Faraday) открывает законы электролиза и вводит такие понятия как электрод, электролит, анод, катод, анион, катион. В 1836 г. Д. Даниэль создаёт первичный источник тока. Даниель занимается проблемой поляризации. В 1839 г. английский физик Вильям-Роберт Грове (Grove) создаёт первый топливный элемент. В 1866 г. француз Жорж Лекланше (Georges Leclanché ) патентует новый элемент — угольно-цинковый гальванический элемент. В 1884 г. Сванте Аррениус (Svante August Arrhenius) публикует диссертацию «Recherches sur la conductibilité galvanique des é lectrolytesc» (Исследования гальванической проводимости электролитов). Он говорит, что электролиты распадаются при растворении на положительные и отрицательные ионы. В 1886 г. Поль Луи Туссен (Paul Hé roult) и Чарльз Холл (Charles M. Hall), одновременно и независимо, разрабатывают промышленный способ получения алюминия путём электролиза на основе законов Фарадея. В 1894 г. Ф. Оствальд (Friedrich Ostwald) завершает важные исследования электропроводности и электродиссоциации органических кислот. В 1888 г. В. Нернст развивает теорию электродвижущей силы первичного элемента, состоящего из двух электродов, разделённых раствором электролита. Он выводит уравнение, известное как Уравнение Нернста — уравнение зависимости электродвижущей силы и концентрации ионов. XX столетие Бурное развитие электрохимии. В 1902 г. — образование электрохимического общества — The Electrochemical Society (ECS). 1949 г. — Международного электрохимического общества — International Society of Electrochemistry (ISE). В 1959 г. чешский учёный Ярослав Гейеровский (Jaroslav Heyrovský ) получает Нобелевскую премию за изобретение и развитие нового вида электрохимического анализа — полярографии. Советская школа электрохимиков
http: //ru.wikipedia.org/
Структура темы
Окислитель — это вещество, которое в ходе реакции принимает электроны, т. е. восстанавливается; восстановитель — отдает электроны, т. е. окисляется. Процессы передачи электронов от одних веществ к другим, обычно называют окислительно—восстановительными реакциями. Соединения, содержащие атомы элементов с максимальной степенью окисления, могут быть только окислителями за счет этих атомов, т.к. они уже отдали все свои валентные электроны и способны только принимать электроны. Максимальная степень окисления атома элемента равна номеру группы в периодической таблице, к которой относится данный элемент. Соединения, содержащие атомы элементов с минимальной степенью окисления могут служить только восстановителями, поскольку они способны лишь отдавать электроны, потому, что внешний энергетический уровень у таких атомов завершен восемью электронами
Степень окисления Степень окисления (окислительное число, формальный заряд) — вспомогательная условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций, численная величина электрического заряда, приписываемого атому в молекуле в предположении, что электронные пары, осуществляющие связь, полностью смещены в сторону более электроотрицательных атомов. Степень окисления соответствует заряду иона или формальному заряду атома в молекуле или в химической формальной единице, например:
Степень окисления указывается сверху над символом элемента. В отличие от указания заряда атома, при указании степени окисления первым ставится знак, а потом численное значение, а не наоборот:
— степень окисления,
— заряды. Степень окисления атома в простом веществе равна нулю, например:
Алгебраическая сумма степеней окисления атомов в молекуле всегда равна нулю:
Суммарная степень окисления атомов в молекуле всегда равна нулю, в ионе – его заряду. Степень окисления является сугубо условной величиной, не имеющей физического смысла, но характеризующей образование полярной ковалентной химической связи в молекуле. Степень окисления в ряде случаев не совпадает с валентностью. Например, в органических соединениях углерод всегда четырёхвалентен, а степень окисления атома углерода в соединениях метана CH4, метилового спирта CH3OH, формальдегида HCOH, муравьиной кислоты HCOOH и диоксида углерода CO2, соответственно, равна − 4, − 2, 0, +2 и +4. Степень окисления зачастую не совпадает с фактическим числом электронов, которые участвуют в образовании связей. Истинные заряды атомов в соединениях, определённые экспериментальным путём, также не совпадают со степенями окисления этих элементов. Например, заряды атомов водорода и хлора в молекуле хлороводорода HCl, в действительности, равны соответственно +0, 17 и − 0, 17, хотя их степени окисления в этом соединении равны +1 и − 1, а в кристаллах сульфида цинка ZnS заряды атомов цинка и серы равны соответственно +0, 86 и − 0, 86, вместо степеней окисления +2 и − 2.
Уравнение Нернста Зависимость окислительно-восстановительного потенциала, отвечающего полуреакции восстановления перманганат-иона в кислой среде (и, как уже отмечалось, одновременно полуреакции окисления катиона Mn2+ до перманганат-иона в кислой среде) от перечисленных выше определяющих его факторов количественно описывается уравнением Нернста φ (MnO4–, H+ / Mn2+) = φ o(MnO4–, H+ / Mn2+) + RT / 5Fln[MnO4–][H+]8 / [Mn2+]. В общем случае уравнение Нернста принято записывать в так: φ (Ox/Red) = φ o(Ox/Red) + RT/(nF) ln [Ox]/[Red], отвечающей записи полуреакции восстановления окислителя Ox + ne- = Red Каждая из концентраций под знаком натурального логарифма в уравнении Нернста возводится в степень, соответствующую стехиометрическому коэффициенту данной частицы в уравнении полуреакции, n – число принимаемых окислителем электронов, R – универсальная газовая постоянная, T – температура, F – число Фарадея. Измерить окислительно-восстановительный потенциал в реакционном сосуде во время протекания реакции, т.е. в неравновесных условиях, невозможно, так как при измерении потенциала электроны должны передаваться от восстановителя к окислителю не непосредственно, а через соединяющий электроды металлический проводник. При этом скорость передачи электронов (силу тока)нужно поддерживать очень малой за счет приложения внешней (компенсирующей) разности потенциалов. Иначе говоря, измерение электродных потенциалов возможно только в равновесных условиях, когда прямой контакт между окислителем и восстановителем исключен.Поэтому квадратными скобками в уравнении Нернста обозначены, как обычно, равновесные (в условиях измерения) концентрации частиц. Хотя потенциалы окислительно-восстановительных пар во время протекания реакции нельзя измерить, их можно вычислить, подставляя в уравнение Нернста текущие, т.е. отвечающие данному моменту времени концентрации. Если рассматривается изменение потенциала по мере протекания реакции, то сначала это начальные концентрации, затем концентрации, зависящие от времени, и, наконец, после прекращения реакции, равновесные. По мере протекания реакции вычисляемый по уравнению Нернста потенциал окислителя уменьшается, а отвечающий второй полуреакции потенциал восстановителя, напротив, увеличивается. Когда эти потенциалы выравниваются, реакция прекращается, и система приходит в состояние химического равновесия. Рекомендуемые упражнения 1. Не прибегая к справочным данным, установите в какой среде (кислой или щелочной) полнее протекают следующие окислительно-восстановительные реакции: а) Cl0 → Cl–I + Cl+I б) Br0 → Br–I + Br+V.. Подтвердите ответ расчетом Δ φ 0 этих реакций в кислой и щелочной средах. 2. Укажите стандартные состояния частиц, участвующих в следующих окислительно-восстановительных реакциях (стандартные условия ОВР) и направление этих реакций в стандартных условиях: а) 2KMnO4 + 3H2O2 = 2MnO2(т) + 3O2(г) +2H2O + 2KOH б) Br2(p) + SO2(г) + 2H2O = 2HBr + H2SO4 в) 2Al(т) + 2NaOH +6H2O = 2Na[Al(OH)4] + 3H2(г) г) 2Сr3+ + 6CO2(г) + 15H2O = Cr2O72– + 8H3O+ + 3H2C2O4. 3. В каком виде Fe(III) является более сильным окислителем – в виде катиона Fe 3+ или в виде аниона [Fe(CN)6]3–? Восстановленные формы – Fe2+ и [Fe(CN)6]4–, соответственно. 4. В каком виде Сo(II) проявляет более сильные восстановительные свойства – в виде катиона Сo2+ или катиона [Co(NH3)6]2+? Окисленные формы – Сo3+ и [Co(NH3)6]3+, соответственно. 5. Можно ли использовать дихромат калия в качестве окислителя для осуществления следующих процессов в кислой среде: а) 2 F– – 2e- = F2 б) 2Br– – 2e- = Br2 в) HNO2 +H2O – 2e- = NO3–+ 3H+ г) Mn2+ + 4H2O – 5e- = MnO4– + 8H+ д) H2S – 2e- = S + 2H+. 6. Установите, можно ли приготовить водный раствор, содержащий одновременно следующие вещества: а) перманганат калия и сульфит калия б) перманганат калия и сульфат калия в) [Cr(OH)6]3– и Br2 г) KNO2 и HI д) H2SO4 и HCl. Если ответ отрицателен, подтвердите его уравнением ОВР. http: //www.alhimik.ru/cafedra/consult/ovr.htm Разработка составлена проф. В.А. Михайловым и ст. преп. Л.И. Покровской в соответствии с решением кафедры неорганической химии МИТХТ им. М.В. Ломоносова. Контрольная работа 9.1. 1. Окислительно-восстановительная реакция ЭТО – …….. Перечислите основные виды окислительно-восстановительных реакций. 2. Степень окисления - ………………. Определите степени окисления элементов в следующих соединениях: N2O5; K2Cr2O7; C2H5OH; N2H4; H2ClO3; O3; Na2AlO3; C4H8; C2H5NO2; Fe3(MnO4)2. 3. Восстановитель ЭТО - ….. Из следующих соединений выберете только окислители, восстановители и вещества которые могут проявлять и те и другие свойства: НF; HNO3; H2SO4; O3; Na2AlO3; N2O5; K2Cr2O7; Fe3(MnO4)2; F2; H2O. 4. Red-ox потенциал это - ……… Что и как определяют Red-ox потенциалы? Запишите условие самопроизвольного протекания окислительно-восстановительных реакций. 5. Составьте электронно-ионные уравнения и расставьте коэффициенты в реакции взаимодействия K2Cr2O7 с FeCl2 в присутствии H2SO4. Образование гальванического элемента. Электродвижущая сила (ЭДС) Гальванический элемент – это система из двух электродов, в которой одновременно самопроизвольно могут, протекать пространственно разделенные процессы окисления и восстановления, при этом во внешней цепи возникает электрический ток и совершатся полезная работа. Одним из первых был создан в 1836 Дж. Даниелем простой гальванический элемент, собранный из двух электродов: цинкового, погруженного в водный раствор сульфата цинка, и медного, погруженного в водный раствор сульфата меди (II). При замкнутой внешней цепи атомы цинка на поверхности цинкового электрода окисляются до ионов с высвобождением электронов: Zn → Zn2+ + 2e-. Эти электроны перемещаются по внешней цепи на медный электрод и восстанавливают ионы меди до атомов: Cu2+ + 2e- → Cu. Поток электронов во внешней цепи - это и есть ток, вырабатываемый элементом. Суммарная реакция, приводящая к химическому превращению и протеканию электрического тока, имеет вид: Cu2+ + Zn → Zn2+ + Cu
Гальванический элемент часто представляют схематически, обозначая границу между электродом и электролитом вертикальной или косой чертой (| или / - обозначает границу раздела между проводниками 1-го рода), а солевой мостик - двумя косыми черточками (// - обозначает границу раздела между проводниками второго рода), тогда гальванический элемент схематично записываем так: А(-) Zn/Zn2+//Cu2+/Cu (+)К где А и К это металлические электроды – анод и катод соответственно. На рис. 9.3.4. приведена лабораторная схема того же элемента. Процессы окисления в электрохимии получили название анодных процессов, а электроды, на которых идут процессы окисления, называют анодами. Процессы восстановления в электрохимии получили название катодных процессов, а электроды, на которых идут процессы восстановления, называют катодами. Вследствие суммарной химической реакции в ГЭ возникает электрический ток, поэтому ее называют токообразующей. При замыкании внешней цепи возникают самопроизвольные процессы растворения цинка на цинковом электроде и выделения меди на медном электроде. (Чтобы предотвратить явление, известное как “запирание ГЭ”, т.е. дать возможность ионам соли свободно перемещаться из одного раствора в другой, используют солевой мостик. Он представляет собой изогнутую (U- образную) стеклянную трубку, заполненную насыщенным раствором хлорида калия. Данные процессы будут продолжаться до тех пор, пока не выровняются потенциалы электродов или не растворится цинковая пластина (или не высадятся из раствора все ионы меди). Разность потенциалов катода и анода гальванического элемента называется его электродвижущей силой (ЭДС) и обозначается DЕ или Dj. Таблица 9.1. Стандартные электродные потенциалы металлов. Уравнение Нернста Электродный потенциал любой окислительно-восстановительной системы, находящейся в нестандартных условиях, можно рассчитать по уравнению Нернста: где: φ - электродный потенциал окислительно-восстановительного электрода, В; φ 0 - стандартный электродный потенциал этого электрода, В, R - универсальная газовая постоянная, равная 8, 314 Дж/моль· К, T – температура в K; n - число электронов в уравнении электродной реакции, F - число Фарадея, равное 96500 Кл/моль, aок., a восст. - активности окисленной формы восстановителя (Меn+) и восстановленной формы окислителя (Ме) в электродной реакции. Подставив в уравнение Нернста T = 298 K, R, F и введя множитель 2, 3 (переход к десятичным логарифмам), получим: Уравнение Нернста для металлического электрода имеет вид: Для разбавленных растворов, в которых активности мало отличаются от концентрации (a » С): Величина j°Men+/Me0 называется стандартным ЭП металлического электрода. Значение ЭП металлического электрода равно величине стандартного ЭП металлического электрода при концентрации ионов металла в растворе, равной 1 моль/л. Стандартный электродный потенциал – равновесная разность потенциалов гальванического элемента, составленного из стандартного водородного электрода (электрод сравнения) и электрода, потенциал которого определяется в стандартных условиях. Рис. 9.3.6. Поляризационные кривые электродов. Плотность тока: , где I - сила тока, А; S - площадь электродов, м2 Величину поляризации электрода можно определить по разности между потенциалом при прохождении тока и равновесным потенциалом j p. А разность потенциалов катода и анода при прохождении тока называется напряжением. U = jiK - jiA Таким образом, напряжение гальванического элемента при прохождении электрического тока меньше его напряжения при I » 0 вследствие поляризации электродов и омических потерь. U = Eэ - DjK - DjA - I· R
Электрохимические методы анализа. Для качественного и количественного анализа химических веществ разработаны различные электрохимические методы, которые часто оказываются полезными также для определения термодинамических и кинетических параметров электродных реакций и изучения их механизмов. Кондуктометрия основана на измерении электропроводности раствора и применяется для определения концентрации солей, кислот, оснований и т.д. При кондуктометрических определениях обычно используют электроды из одинаковых материалов, а условия их проведения подбирают таким образом, чтобы свести к минимуму вклад скачков потенциала на обеих границах раздела электрод/электролит (например, используют переменный ток высокой частоты). В этом случае основной вклад в измеряемый потенциал ячейки вносит омическое падение напряжения IR, где R - сопротивление раствора. Электропроводность однокомпонентного раствора можно связать с его концентрацией, а измерение электропроводности электролитов сложного состава позволяет оценить общее содержание ионов в растворе и применяется, например, при контроле качества дистиллированной или деионизованной воды. В другой разновидности кондуктометрии - кондуктометрическом титровании - к анализируемому раствору порциями добавляют известный реагент и следят за изменением электропроводности. Точка эквивалентности, в которой отмечается резкое изменение электропроводности, определяется из графика зависимости этой величины от объема добавленного реагента. Потенциометрия применяется для определения различных физико-химических параметров исходя из данных о потенциале гальванического элемента. Электродный потенциал в отсутствие тока в электрохимической цепи, измеренный относительно электрода сравнения, связан с концентрацией раствора уравнением Нернста. В потенциометрических измерениях широко применяются ионоселективные электроды, чувствительные преимущественно к какому-то одному иону в растворе: стеклянный электрод для измерения рН и электроды для селективного определения ионов натрия, аммония, фтора, кальция, магния и др. В поверхностный слой ионоселективного электрода могут быть включены ферменты, и в результате получается система, чувствительная к соответствующему субстрату. Отметим, что потенциал ионоселективного электрода определяется не переносом электронов, как в случае веществ с электронной проводимостью, а в основном переносом или обменом ионов. Однако уравнение Нернста, связывающее электродный потенциал с логарифмом концентрации (или активности) вещества в растворе, применимо и к такому электроду. При потенциометрическом титровании реагент добавляют в анализируемый раствор порциями и следят за изменением потенциала. S-образные кривые, характерные для такого типа титрования, позволяют определить точку эквивалентности и найти такие термодинамические параметры, как константа равновесия и стандартный потенциал. Популярное:
|
Последнее изменение этой страницы: 2016-08-24; Просмотров: 987; Нарушение авторского права страницы