Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
ПОНЯТИЕ О ВЗАИМОЗАМЕНЯЕМОСТИ И ЕЕ ВИДАХ
Взаимозаменяемостью изделий (машин, приборов, механизмов и т. д.), их частей или других видов продукции (сырья, материалов, полуфабрикатов и т. д.) называют их свойство равноценно заменять при использовании любой из множеству экземпляров изделий, их частей или иной продукции другим однотипным экземпляром. Наиболее широко применяют полную взаимозаменяемость, которая обеспечивает возможность беспригоночной сборки (или замены при ремонте) любых независимо изготовленных с заданной точностью однотипных деталей в сборочные единицы, а последних — в изделия при соблюдении предъявляемых к ним (к сборочным единицам или изделиям) технических требований по всем параметрам качества. Полная взаимозаменяемость возможна только, когда размеры, форма, механические, электрические и другие количественные и качественные характеристики деталей и сборочных единиц после изготовления находятся в заданных пределах я собранные изделия удовлетворяют техническим требованиям. Выполнение требований к точности деталей и сборочных единиц изделий является важнейшим исходным условием обеспечения взаимозаменяемости. Кроме этого, для обеспечения взаимозаменяемости необходимо выполнять и другие условия (устанавливать оптимальные номинальные значения параметров деталей и сборочных единиц, выполнять требования к материалу деталей, технологии их изготовления и контроля и т. д.). Комплекс научно-технических исходных положений, выполнение которых при конструировании, производстве и эксплуатации обеспечивает взаимозаменяемость деталей, сборочных единиц и изделий называют принципом взаимозаменяемости. Взаимозаменяемыми могут быть детали, сборочные единицы и изделия в целом. В первую очередь такими должны быть детали и сборочные единицы, от которых зависят надежность и другие эксплуатационные показатели изделий. Это требование, естественно, распространяется и на запасные части. Свойство собираемости и возможности равноценной замены любого экземпляра взаимозаменяемой детали и сборочной единицы любым другим однотипным экземпляром позволяет изготовлять детали в одних цехах машиностроительных заводов серийного и массового производства, а собирать их — в других. При сборке используют стандартные крепежные детали, подшипники качения, электротехнические, резиновые и пластмассовые изделия, а часто их унифицированные агрегаты, получаемые по кооперации от других предприятий. При полной взаимозаменяемости сборку выполняют без доработки деталей и сборочных единиц. Такое производство называют взаимозаменяемым. При полной взаимозаменяемости упрощается процесс сборки — он сводится к простому соединению деталей рабочими преимущественно невысокой квалификации; появляется возможность точно нормировать процесс сборки во времени, устанавливать необходимый темп работы и применять поточный метод; создаются условия для автоматизации процессов изготовления и сборки изделий, а также широкой специализации и кооперирования заводов (при которых завод-поставщик изготовляет унифицированные изделия, сборочные единицы и детали ограниченной номенклатуры и поставляет их заводу, выпускающему основные изделия); упрощается ремонт изделий, так как любая изношенная или поломанная деталь или сборочная единица может быть заменена новой (запасной). Полную взаимозаменяемость экономически целесообразно применять для деталей, изготовленных с допусками квалитетов не выше 6 и для сборочных единиц, состоящих из небольшого числа деталей, а также в случаях, когда несоблюдение заданных зазоров или натягов недопустимо даже у части изделий. Иногда для удовлетворения эксплуатационных требований необходимо изготовлять детали и сборочные единицы с малыми экономически неприемлемыми или технологически трудно выполнимыми допусками. В этях случаях для получения требуемой точности сборки применяют групповой подбор деталей (селективную сборку), компенсаторы, регулирование положения некоторых частей машин и приборов, пригонку и другие дополнительные технологические мероприятия при обязательном выполнении требований к качеству сборочных единиц и изделий. Такую взаимозаменяемость называют неполной (ограниченной). Ее можно осуществлять не по всем, а только по отдельным геометрическим или другим параметрам. Внешняя взаимозаменяемость — это взаимозаменяемость покупных и кооперируемых изделий (монтируемых в другие более сложные изделия) и сборочных единиц по эксплуатационным показателям, а также по размерам и форме присоединительных поверхностей. Например, в электродвигателях внешнюю взаимозаменяемость обеспечивают по частоте вращения вала и мощности, а также по размерам присоединительных поверхностей; в подшипниках качения — по наружному диаметру наружного кольца и внутреннему диаметру внутреннего кольца, а также по точности вращения. Внутренняя взаимозаменяемость распространяется на детали, сборочные единицы и механизмы, входящие в изделие. Например, в подшипнике качения внутреннюю групповую взаимозаменяемость имеют тела качения и кольца. Уровень взаимозаменяемости производства можно характеризовать коэффициентом взаимозаменяемости Кв, равным отношению трудоемкости изготовления взаимозаменяемых деталей и сборочных единиц к общей трудоемкости изготовления изделия. Значение этого коэффициента может быть различным, однако степень его приближения к единице является объективным показателем технического уровня производства. Совместимость — это свойство объектов занимать свое место в сложном готовом изделии и выполнять требуемые функции при совместной или последовательной работе этих объектов и сложного изделия в заданных эксплуатационных условиях. Объект — это автономные блоки, приборы или другие изделия, входящие в сложные изделия. Взаимозаменяемое производство в металлообрабатывающей промышленности впервые в мире было осуществлено в 1761 г. на Тульском, а затем на Ижевском заводах при массовом изготовлении ружей. ВОПРОС № 2 Шероховатостью поверхности согласно ГОСТ 25142—82 (СТ СЭВ 1156—78) называют совокупность неровностей поверхности с относительно малыми шагами, выделенную с помощью базовой длины.Измерение шероховатости поверхности. Качественный контроль шероховатости поверхности осуществляют путем сравнения с образцами или образцовыми деталями визуально или на ощупь. ГОСТ 9378—75 устанавливает образцы шероховатости, полученные механической обработкой, снятием позитивных отпечатков гальванопластикой или нанесением покрытий на.пластмассовые отпечатки. Наборы или отдельные образцы имеют прямолинейные, дугообразные или перекрещивающиеся дугообразные расположения неровностей поверхности. На каждом образце указаны значение параметра Ra (в мкм) и вид обработки образца. Визуально можно удовлетворительно оценить поверхности с 0, 6... 0, 8 мкм и более. Для повышения точности используют щупы и микроскопы сравнения, например, типа МС-48. Количественный контроль параметров шероховатости осуществляют бесконтактными методами (с помощью приборов светового сечения типа МИС-11 и ПСС-2, микроинтерферометров, имерсионно-репликовых микроинтерферометров МИИ-10, типа МИИ-4, МИИ-9, МИИ-11, МИИ-12, растровых измерительных микроскопов типа ОРИМ-1 и др.) и контактными методами с помощью щуповых приборов (профилометров и профилографов). Характеристики основных приборов, выпускаемых заводами «Калибр» и ЛОМО, приведены в табл. 8.5. При выборе метода и типа прибора необходимо учитывать возможность контроля предписанного чертежом параметра, пределы измерения, допускаемые отклонения контролируемого параметра, погрешность измерения и прибора, производительность прибора, форму, размеры и материал детали и другие факторы. Контактные профилографы и профилометры, имеющие высокую точность, применяют для контроля наиболее ответственных измерений.Игла прибора оставляет след (царапину) на поверхности детали, поэтому для контроля деталей из мягких материалов применяют бесконтактные приборы. В бесконтактных приборах (типа ПСС-2 и МИС-11), принцип действия которых основан на измерении параметров проекции светового сечения исследуемой поверхности с помощью наклонно направленного к ней светового пучка (рис. 8.27, а), световой луч проходит через диафрагму 1 с узкой щелью и конденсор 2 и проецирует световую полоску поверхности 3 объекти вом 4 в фокальную плоскость окуляра 5. Высоту микронеровностей измеряют с помощью окуляра-микрометра (рис. 8.27, б). Принцип действия интерферометров основан на использовании явления интерференции свёта.Пзтражённого от образцовой и исследуемой поверхностей. Форма образующихся интерференционных полос зависит от вида и высоты (до 1 мкм) неровностей контролируемой поверхности. Принцип действия растровых микроскопов основан на явлении образования муаровых полос при наложении изображений элементов двух периодических структур (направленных следов обработки и дифракционной решетки). При наличии неровностей муаровые полосы искривляются. Высоту микронеровностей определяют по степени искривления муаровых полос. В щуповых приборах контактного действия для измерения высоты неровностей используют вертикальные колебания иглы, перемещаемой по контролируемой поверхности. Колебания преобразуются в электрическое напряжение с помощью индуктивных, ме-ханотронных, пьезоэлектрических и других преобразователей. Так, профилограф-профилометр мод. 252, в котором использован индуктивный преобразователь, позволяет записывать профиль неровностей в увеличенном масштабе в виде профилограммы или измерять параметры шероховатости в цифровом виде по шкалам приборов (рис. 8.28). Прибор снабжен преобразователем, электронным измерительным блоком 7 со счетно-решающим блоком 8 и записывающим устройством 9. Индуктивный преобразователь выполняют в виде сдвоенного сердечника 5 с двумя катушками 6. Катушки и две половины первичной обмотки дифференциального входного трансформатора включены по мостовой схеме, питание которой происходит от генераторов 4 и 10 с частотой 10 кГц. При перемещении по контролируемой поверхности алмазная игла 3 преобразователя вместе с якорем 1, подвешенном на опоре 2, совершает крутильные колебания. Повороты якоря перераспределяют индуктивности катушек, изменяя тем самым выходное напряжение дифференциального трансформатора. Изменения амплитуды напряжения характеризуют высоту микронеровностей, а изменение чистоты (при работе трибора в режиме профилометра) — их шаг. Числовые значения параметров определяют с помощью цифрового отсчетного устройства. Лри работе прибора в режиме профилографа изменения напряжения подаются на записывающее устройство. В цеховых условиях возникает потребность в оперативном определении параметров шероховатости поверхности а не в записи про-филограмм. Для этих целей выпускают цеховые профилометры мод. 253 и 283, принцип действия которых основан на преобразовании колебаний иглы с помощью механотронного преобразователя (рис. 8.29). Алмазная игла 3 закреплена на конце щупа 2, который через тонкую мембрану связан с подвижным анодом механотрона 1. Крепление механотрона с помощью кольца и пружины позволяет осуществлять его быструю замену и точное регулирование положения иглы относительно передней твердосплавной опоры. Игла перемещается с постоянной скоростью. С механотрона сигнал подается на усилитель, линейный выпрямитель, интегратор и стрелочный показывающий прибор, шкала которого проградуирована в значениях параметра Ra. Профилометр мод. 283 имеет диапазон измерения Ra от 0, 02 до 10 мкм, наименьший измеряемый диаметр внутреннего цилиндра 6 мм при глубине 20 и 18 мм при глубине 130 мм. Длина трассы составляет соответственно 1, 5 и 4, 5 мм. Для измерения шероховатости крупногабаритных деталей и в труднодоступных местах вначале снимают отпечаток поверхности — ее реплику, по которой оценивают параметры шероховатости. БИЛЕТ № 6 ВОПРОС № 1 Посадкой называют характер соединения деталей, определяемый величиной получающихся в нем зазоров или натягов. Посадка характеризует свободу относительного перемещения соединяемых деталей или степень сопротивления их взаимному смещению. В зависимости от взаимного расположения полей допусков отверстия и вала посадка может быть: с зазором (см. рис. 1.1), с натягом или переходной, при которой возможно получение как зазора, так и натяга. Схемы полей допусков для разных посадок даны ка рис. 1.2. Зазор — разность размеров отверстия и вала, если размер отверстия больше размера вала. Зазор обеспечивает возможность относительного перемещения собранных деталей. Наибольший, наименьший и средний зазоры определяют по формулам — разность размеров вала и отверстия до сборки, если размер вала больше размера отверстия. Натяг обеспечивает взаим ную неподвижность деталей после их сборки. Наибольший, наименьший и средний натяги определяют по формулам
Посадка с зазором — посадка, при которой обеспечивается зазор в соединении (поле допуска отверстия расположено над полем допуска вала, рис. 1.2, а). К посадкам с зазором относятся также посадки, в которых нижняя граница поля допуска отвеостия совпадает с верхней границей поля допуска вала, т. е. Посадка с натягом — посадка, при которой обеспечивается натяг в соединении (поле допуска отверстия расположено под полем допуска вала, рис. 1.2, 6). Переходная посадка — посадка, при которой возможно получение как зазора, так и натяга (поля допусков отверстия и вала перекрываются частично или полностью, рис. 1.2, е). Допуск посадки — разность между наибольшим и наименьшим допускаемыми зазорами (допуск зазора в посадках с зазором) или наибольшим и наименьшим допускаемыми натягами (допуск натяга TN в посадках с натягом): В переходных посадках допуск посадки — сумма наибольшего натяга и наибольшего зазора, взятых по абсолютному значению. Для всех типов посадок допуск посадки численно равен сумме допусков отверстия и вала, т. е. Пример обозначения посадки: где 40 — номинальный размер в мм, общий для отверстия и вала. ВОПРОС № 2 Популярное:
|
Последнее изменение этой страницы: 2016-08-24; Просмотров: 851; Нарушение авторского права страницы