Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Простейшие случаи сопротивления



Вид напряженного состояния Nz Qx Qy Mz Mx My
Растяжение/сжатие +
Кручение +
Чистый изгиб относительно оси х +
Чистый изгиб относительно оси у +
Поперечный изгиб относительно оси х + +
Поперечный изгиб относительно оси у + +

Примечание: + означает наличие усилия, 0 - его отсутствие.

 

 

Напряжения

В окрестности произвольной точки К, принадлежащей сечению А некоторого нагруженного тела, выделим элементарную площадку DF, в пределах которой действует внутреннее усилие D (рис. 1.4, а). Векторная величина

(1.5)

называется полным напряжением в точке К. Проекция вектора полного напряжения на нормаль к данной площадке обознача­ется через s и называется нормальным напряжением.

Рис. 1.4

Проекции вектора на перпендикулярные оси в плоскости площадки (рис. 1.4, б) называются касательными напряже­ниями по направлению соответствующих осей и обозначаются t´ и t´ ´. Если через ту же самую точку К провести другую площадку, то, в общем случае будем иметь другое полное напряжение. Совокуп­ность напряжений для множества площадок, проходящих через данную точку, образует напряженное состояние в этой точке.

 

23.

 

 

Теории прочности

Как показывают экспериментальные исследования, прочность материалов существенно зависит от вида напряженного состояния. В общем случае нагруженного тела напряженное состояние в ка­кой-либо точке вполне может быть определено величиной напря­жений в трех координатных плоскостях, проходящих через эту точку. При произвольном выборе положения координатных плос­костей, в каждой из них, вообще говоря, имеются и нормальные, и касательные напряжения. Для них вводятся соответствующие обо­значения в плоскости xy: szz , tzx , tzy ; в плоскости xz: syy , tyx , tyz; в плоскости yz: sxx , txy , txz . Здесь первый индекс показывает ориентацию площадки, в которой действует напряжение, т.е. какой из координатных осей она перпендикулярна. Второй индекс ука­зывает направление напряжения по координатной оси.

В каждой точке тела существуют три взаимно перпендикуляр­ные плоскости, свободные от касательных напряжений, носящие название главных площадок. Нормальные напряжения в этих пло­щадках называются главными напряжениями и обозначаются s1, s2, s3. При этом всегда s1 > s2 > s3. Заметим, что более подробно вопросы теории напряженного состояния в точке обсуждены в десятом разделе настоящей книги, и по данному вопросу имеется обширная литература.

Напряженные состояния разделяются на три группы. Напря­женное состояние называется: а) объемным или трехосным, если все главные напряжения s1, s2, s3 не равны нулю; б) плос­ким или двухосным, если одно из трех главных напряжений равно нулю; в) одномерным или одноосным, если два из трех главных напряжений равны нулю.

Основной задачей теории прочности является установление критерия прочности, позволяющего сравнить между собой опас­ность различных напряженных состояний материала.

Выбранный критерий прочности должен быть обоснован на основе экспериментальных данных путем проведения испытаний различных материалов в зависимости от вида напряженного сос­тояния, как функция от соотношений между значениями главных напряжений.

Заметим, что, так как в настоящее время строгой единой тео­рии прочности материалов, в зависимости от вида напряженного состояния, не существует, поэтому при выполнении практических расчетов применяются упрощенные критерии.

Как отмечалось в п. 2.8, наиболее распространенным и наглядным критерием проверки конструкций на прочность, при простейших случаях напряженного состояния (сжатие-растяжение, кручение, чистый изгиб), является выполнение условия:

smax £ [s], (5.38)

где smax - максимальное расчетное значение напряжения, возника­ющее в наиболее опасной точке конструкции; [s] - допускаемое значение напряжения для материала конструкции.

В настоящее время при выполнении расчетов конструкций на прочность, при произвольных напряженных состояниях, широко используются три теории прочности.

Согласно первой теории критерием прочности является ограничение главного максимального напряжения:

smax = s1 £ [s], (5.39)

где [s] - предельное напряжение, полученное из опытов на одно­осное растяжение.

Основным недостатком этой теории является не учет двух других главных напряжений.

В основу второй теории прочности заложена гипотеза о том, что критерием оценки работы конструкции является ограни­чение наибольшего удлинения. В формулировке данного положе­ния через главные напряжения (s1 и s2 ) это условие для плоского на­пряженного состояния записывается следующим образом:

s1 - m s2 £ [s],

где [s] - напряжение, при котором было вызвано предельное уд­линение образца в опытах на одноосное растяжение; m - коэф­фициент бокового расширения.

При объемном напряженном состоянии вторая теория проч­ности записывается в виде:

s1 - m (s2 -s3) £ [s], (5.40)

Экспериментальная проверка не всегда подтверждает правиль­ность теории прочности наибольших линейных деформаций при простых нагружениях, т.е. при чистом растяжении или чистом сдвиге. Однако до настоящего времени эта теория имела широкое применение при выполнении инженерных расчетов..

В основу третьей теории прочности заложена гипотеза о том, что причиной разрушения материалов являются сдвиговые деформации, происходящие на площадках максимальных касатель­ных напряжений, т.е.

tmax < [t], (5.41)

где tmax - расчетное максимальное касательное напряжение, возни­кающее в опасной точке нагруженного тела; [t] - предельное зна­чение касательного напряжения, полученное из опытов.

Для плоского напряженного состояния по третьей теории усло­вие прочности записывается в виде:

s1 - s2 < [s]. (5.42)

В случае поперечного изгиба балки (s2 = 0), если выразить главные напряжения s1 и s3 через s и t, то условие прочности (5.42) преобразуется в виде:

, (5.43)

где R - расчетное сопротивление материала балки при изгибе.

 

Пример расчета (задача № 13)

Дан пространственный консольный брус с ломаным очертани­ем осевой линии, нагруженный сосредоточенной силой Р = 1 кН и равномерно распределенной нагрузкой q = 2 кН/м. На рис. 5.34, а этот брус показан в аксонометрии в соответствии с прямоугольной системой координат xyz. Вертикальный элемент бруса имеет попе­речное сечение в виде круга диаметром d = 0, 06 м (рис. 5.34, в), горизонтальные элементы бруса имеют поперечные сечения в виде прямоугольника (рис. 5.34, б). Ширина сечения b = d = 0, 06 м, а высота сечения c = 0, 5 d = 0, 03 м. Ориентация главных осей попе­речных сечений на каждом участке показана на рис. 5.34, г.

Требуется:

1. Построить в аксонометрии эпюры Mx, My, Mz , Nz, Qx, Qy;

2. Указать вид сопротивления для каждого участка бруса;

3. Определить максимальные напряжения в опасном сечении каждого участка от внутренних усилий Nz, Mx, My и Mz (касатель­ными напряжениями от Qx и Qy можно пренебречь);

4. Проверить прочность при расчетном сопротивлении R = = 180 МПа.

Решение

1. Построить в аксонометрии эпюры Mx, My, Mz , Nz, Qx, Qy. Заметим, что так как заданная система пространственная, при произвольном характере нагружения, в опорном сечении, где установлена заделка, возникает шесть опорных реакций (три опор­ные силы и три момента). Для определения опорных реакций, в данном случае, можем применить шесть уравнений равновесия ста­тики. Так как число независимых уравнений равновесия равно чис­лу опорных реакций, то можно сделать вывод, что рассматриваемая система в виде ломаного бруса, с заделанным одним концом, явля­ется статически определимой. Поэтому рассматриваемая система разрешима по методу сечений. Далее, учитывая особенности конст­рукции, определение величин внутренних усилий можно осущест­вить без предварительного вычисления величин опорных реакций.


Поделиться:



Популярное:

  1. VI.3. ТРУДНЫЕ СЛУЧАИ УПОТРЕБЛЕНИЯ ИМЕН СУЩЕСТВИТЕЛЬНЫХ
  2. VI.7. ТРУДНЫЕ СЛУЧАИ УПОТРЕБЛЕНИЯ МЕСТОИМЕНИЙ
  3. Важнейшие характеристики механического движения. Простейшие закономерности. Прямолинейное и криволинейное движение. Связь, между линейными и угловыми параметрами движения
  4. Влияние переходного сопротивления контактов на нагрев проводников
  5. Вопрос 377. Основания и процессуальный порядок назначения экспертизы. Случаи обязательного назначения экспертизы. Процессуальные виды экспертиз.
  6. Вопрос № 21 Лексические нормы СРЛЯ (общая характеристика, основные случаи нарушения норм).
  7. Зависимость сопротивления проводника от температуры.
  8. Измерение сопротивления милливольтметра
  9. ИЗУЧЕНИЕ ЗАВИСИМОСТИ МОЩНОСТИ ИСТОЧНИКА ТОКА ОТ СОПРОТИВЛЕНИЯ НАГРУЗКИ
  10. Источники теплоты при сварке. Эквивалентная электрическая схема. Характер изменения сопротивления зоны сварки.
  11. КОНТРОЛЬ ПЕРЕХОДНОГО СОПРОТИВЛЕНИЯ КОНТАКТОВ
  12. Методика гидравлического расчета по характеристикам сопротивления


Последнее изменение этой страницы: 2016-08-31; Просмотров: 511; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.024 с.)
Главная | Случайная страница | Обратная связь