Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Границы применимости решения Эйлера. Формула Ясинского
Как показали опыты, решение Эйлера подтверждалось не во всех случаях. Причина состоит в том, что формула Эйлера была получена в предположении, что при любой нагрузке стержень работает в пределах упругих деформаций по закону Гука. Следовательно, его нельзя применять в тех ситуациях, когда напряжения превосходят предел пропорциональности. В связи с этим найдем границы применимости решения Эйлера: Рис. 7.4 , (7.13) где - радиус инерции сечения. Если стержень имеет одинаковые опорные закрепления в двух взаимно перпендикулярных плоскостях инерции, то при определении значения критической силы и критического напряжения, необходимо брать наименьшее значение момента инерции и, соответственно, радиуса инерции поперечного сечения. Введем понятие гибкости стержня: . Тогда (7.13) принимает вид: . (7.14) Из (7.14) следует, что напряжение sКР возрастает по мере уменьшения гибкости стержня. Заметим, что стержень, имеющий неодинаковые опорные закрепления в главных плоскостях и, следовательно, неодинаковые приведенные длины, теряет устойчивость в той главной плоскости, в которой гибкость стержня имеет наибольшее значение. Формула Эйлера неприемлема, если напряжения sКР > sП, где sП - предел пропорциональности. Приравнивая (7.14) к пределу пропорциональности, получим предельное значение гибкости: . (7.15) Если l > lПРЕД, то формулу Эйлера можно применять. В противном случае ею пользоваться нельзя. Для стали Ст.3 lПРЕД = 100. В ситуациях, когда напряжения превышают предел пропорциональности, получение теоретического решения осложняется, т.к. зависимость между напряжениями и деформациями становится нелинейной. В связи с этим, в этих случаях пользуются эмпирическими зависимостями. В частности, Ф.С. Ясинский предложил следующую формулу для критических по устойчивости напряжений: , (7.16) где a, b - постоянные, зависящие от материала, так для стали Ст.3 a = 3, 1× 105 кН/м2 , b = 11, 4× 102 кН/м2. При гибкостях стержня, находящихся в диапазоне 0< l< 40¸ 50, стержень настолько “короток”, что его разрушение происходит по схеме сжатия, следовательно, критические напряжения можно приравнять в этом случае к пределу пропорциональности. Обобщая вышесказанное, зависимость критических напряжений sКР от гибкости стержня l можно представить, как это сделано на рис. 7.5.
Рис. 7.5
Расчет сжатых стержней на устойчивость Как правило, основная проблема при расчете сжатых стержней состоит в том, чтобы сжимающие напряжения s не превышали бы критических значений по устойчивости sКР, т.е. . (7.17) При продольном изгибе центрально сжатый стержень теряет несущую способность, когда напряжения в его поперечных сечениях достигают критических значений. Поэтому необходимо ввести в расчет коэффициент запаса устойчивости n по отношению к критическим напряжениям, с помощью которого и определяется допускаемое напряжение при расчете на устойчивость: . При расчете же стержней на растяжение применяют условие s < R, где R - расчетное сопротивление на растяжение. Для унификации расчетов на растяжение и сжатие введем соотношение правых частей двух последних неравенств: , (7.18) откуда . И тогда (7.17) можно записать так: s < jR. Величина j носит название коэффициента уменьшения расчетного сопротивления при расчете на сжатие и является функцией от гибкости стержня l (табл. 5). Таким образом, окончательно формула для расчета стержней на устойчивость принимает следующий вид: . (7.19) Несмотря на простоту выражения (7.19) расчет сжатых стержней производится, как правило, в несколько этапов. Это связано с тем, что величина j зависит от формы и размеров сечения, поэтому не может быть назначена заранее. В связи с этим, подбор сечения осуществляют итеративно, постепенно приближаясь к тому, чтобы разница между напряжением сжатия s и расчетным сопротивлением на растяжение R не превышала бы 3-.%5 Таблица 5
44. 46. Популярное:
|
Последнее изменение этой страницы: 2016-08-31; Просмотров: 946; Нарушение авторского права страницы