Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Уравновешивание с помощью противовесов на звеньях механизма



Рассмотрим последовательность статического уравновешивания на примере четырёхшарнирного механизма (рис. 98, а). Заменяем массы звеньев 1, 2, 3 сосредоточенными массами в точках A, B, C, D, причём в силу неподвижности точек A и D, массы, сосредоточенные в этих точках, можно не учитывать.

рис. 98

Приведённые массы в точках В и С равны:

;

.

Так как заменяющие массы mB и mC совершают вращательное движение, то для уравновешивания сил инерции необходимы противовесы с массами mЕ и mF, определяемыми из условий (рис. 98, б):

; ,

где, задавая длины противовесов, можно получить их массы и наоборот.

Рассмотрим моментное уравновешивание на примере четырёхшарнирного механизма. Его приближённое моментное уравновешивание можно осуществить после статического уравновешивания, введя в схему механизма два одинаковых дополнительных противовеса (рис. 99), соединённых с зубчатыми колёсами “a” и “b”. Колесо “a” жёстко связано с кривошипом 1 и вращается с угловой скоростью , а равное ему колесо “b” вращается с той же угловой скоростью , но угловые координаты противовесов отличаются на 1800, поэтому момент пары сил инерции от противовесов равен . Подбирая положение точки E, можно обеспечить направление , противоположное направлению , а массу противовесов определяют из условия = .

 

 

 

рис. 99

 

10.3. Уравновешивание вращающихся масс (роторов)

Ротором в теории балансировки называется любое вращающееся тело. В связи с появлением быстроходных машин возникла проблема уравновешивания быстровращающихся деталей. Так, например, скорость некоторых турбин, валов гироскопов, суперцентрифуг достигает 3÷ 50 тысяч об/мин и малейшее смещение центра масс с геометрической оси вращения вызывает появление больших сил инерции, т.е. вибрационных явлений в машине и фундаменте.

Различают статическое уравновешивание (статическая балансировка) вращающихся роторов и динамическое. Статическая балансировка достигается тем, что центр тяжести вращающейся детали переводят в неподвижную точку. Такое уравновешивание применяется для плоских деталей, длина которых мала по сравнению с диаметром. Если такую деталь заменить сосредоточенной массой m, вращающейся относительно неподвижного центра вращения (рис. 100, а), то можно записать уравнение динамики:

,

где G – вес; FA – реакция в опоре;

Fu – сила инерции, равная:

.

Здесь g– ускорение силы тяжести;

дисбаланс ( ), который характеризует неуравновешенность и направлен так же

как сила инерции Fu.

 

 

рис. 100

План сил в данном положении (рис. 100, б) показывает, что FA – величина переменная по направлению и создаёт динамические нагрузки и вибрацию. Если , то и динамические нагрузки отсутствуют. Для этого необходимо уравновесить дисбаланс установкой массы противовеса с противоположной стороны (рис. 100, в). Тогда дисбалансы будут уравновешены и Gп определяется из условия , т.е. , где .

Рассмотрим уравновешивание неплоской детали, которую можно представить, например, в виде двух грузов G1 и G2 (рис. 101, а). В этом случае возникают

реакции, вызванные неуравновешенностью как сил, так и моментов от сил инерции. Причём момент от сил инерции относительно точки А равен и характеризуется дисбалансом .

рис. 101

В этом случае динамические нагрузки на опоры возникают даже если проведена статическая балансировка, когда центр тяжести грузов 1 и 2 совпадает с центром вращения. Уравновешивание моментов от сил инерции вращающихся деталей будет обеспечена динамической балансировкой.

Полное уравновешивание системы можно осуществить двумя дополнительными грузами G3 и G4, установленными в разных плоскостях I и II, называемых плоскостями исправления. При этом должны выполняться условия:

или ;

или .

Совместное решение указанных уравнений, например, графическим путём (рис. 101, б, в) позволяет найти вес и положение противовесов G3 и G4.

Балансировка вращающихся масс осуществляется на специальных балансировочных станках, при этом исключается неуравновешенность, вызванная неточностью изготовления детали.

20.

21. Задачи и методы сопротивления материалов

Сопротивление материалов - наука о прочности, жесткости и устойчивости элементов инженерных конструкций. Методами со­противления материалов выполняются расчеты, на основании кото­рых определяются необходимые размеры деталей машин и конструкций инженерных сооружений.

В отличие от теоретической механики сопротивление материа­лов рассматривает задачи, в которых наиболее существенными яв­ляются свойства твердых деформируемых тел, а законами движения тела как жесткого целого здесь пренебрегают. В то же время, вслед­ствие общности основных положений, сопротивление материалов рассматривается как раздел механики твердых деформируемых тел.

В состав механики деформируемых тел входят также такие дис­циплины, как: теория упругости, теория пластичности, теория пол­зучести, теория разрушения и др., рассматривающие, по существу, те же вопросы, что и сопротивление материалов. Различие между сопротивлением материалов и другими теориями механики твердо­го деформируемого тела заключается в подходах к решению задач.

Строгие теории механики деформируемого тела базируются на более точной постановке проблем, в связи с чем, для решения задач приходится применять более сложный математический аппарат и проводить громоздкие вычислительные операции. Вследствие этого возможности применения таких методов в практических задачах ограничены.

В свою очередь, методы сопротивления материалов базируются на упрощенных гипотезах, которые, с одной стороны, позволяют решать широкий круг инженерных задач, а с другой, получать при­емлемые по точности результаты расчетов.

При этом главной задачей курса является формирование зна­ний для применения математического аппарата при решении при­кладных задач, осмысления полученных численных результатов и поиска выбора наиболее оптимальных конструктивных решений. То есть данный предмет является базовым для формирования ин­женерного мышления и подготовки кадров высшей квалификации по техническим специализациям.

 


Поделиться:



Популярное:

  1. I.12. Факторы жизни растений, возможность управления ими с помощью агротех. приёмов.
  2. Базовая модель в контексте формализованной схемы моделирования хозяйственного механизма
  3. Вопрос 30. Вычисление тренда с помощью метода аналитического выравнивания.
  4. Генерация базы данных в СУБД Access с помощью физической модели данных
  5. Диагностирование тормозной системы автомобиля с помощью тормозного стенда К–208
  6. Дрессировка собак с помощью кликера
  7. Изгибы, трещины поводков передаточного механизма
  8. Изготовление документов с помощью технических средств
  9. Измерение ватт-амперной характеристики лазерного диода с помощью измерителя оптической мощности
  10. Измерение коэффициента амплитудной модуляции с помощью осциллографа при синусоидальной развертке НЧ сигналом (методом трапеции).
  11. ИЗМЕРЕНИЕ СКОРОСТИ ПОЛЕТА ПУЛИ С ПОМОЩЬЮ БАЛЛИСТИЧЕСКОГО МАЯТНИКА
  12. ИЗМЕРЕНИЕ УСКОРЕНИЯ СВОБОДНОГО ПАДЕНИЯ С ПОМОЩЬЮ МАШИНЫ АТВУДА


Последнее изменение этой страницы: 2016-08-31; Просмотров: 771; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.013 с.)
Главная | Случайная страница | Обратная связь