Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Карбоволокниты с углеродной матрицей.
Коксованные материалы получают из обычных полимерных карбоволокнитов, подвергнутых пиролизу в инертной или восстановительной атмосфере. При температуре 800-1500°С образуются карбонизированные, при 2500-3000°С графитированные карбоволокниты. Для получения пироутлеродных материалов упрочнитель выкладывается по форме изделия и помещается в печь, в которую пропускается газообразный углеводород (метан). При определенном режиме (температуре 1100°С и остаточном давлении 2660 Па) метан разлагается и образующийся пиролитический углерод осаждается на волокнах упрочнителя, связывая их. Образующийся при пиролизе связующего кокс имеет высокую прочность сцепления с углеродным волокном. В связи с этим композиционный материал обладает высокими механическими и абляционными свойствами, стойкостью к термическому удару. Карбоволокнит с углеродной матрицей типа КУП-ВМ по значениям прочности и ударной вязкости в 5-10 раз превосходит специальные графиты; при нагреве в инертной атмосфере и вакууме он сохраняет прочность до 2200°С, на воздухе окисляется при 450°С и требует защитного покрытия. Коэффициент трения одного карбоволокнита с углеродной матрицей по другому высок (0, 35-0, 45), а износ мал (0, 7-1 мкм на торможение). Полимерные карбоволокниты используют в судо- и автомобилестроении (кузова гоночных машин, шасси, гребные винты); из них изготовляют подшипники, панели отопления, спортивный инвентарь, части ЭВМ. Высокомодульные карбоволокниты применяют для изготовления деталей авиационной техники, аппаратуры для химической промышленности, в рентгеновском оборудовании и др. Карбоволокниты с углеродной матрицей заменяют различные типы графитов. Они применяются для тепловой защиты, дисков авиационных тормозов, химически стойкой аппаратуры. Физико-механические свойства карбоволокнитов приведены в табл.2. Бороволокниты Бороволокниты представляют собой композиции из полимерного связующего и упрочнителя — борных волокон. Бороволокниты отличаются высокой прочностью при сжатии, сдвиге и срезе, низкой ползучестью, высокими твердостью и модулем упругости, теплопроводностью и электропроводимостью. Ячеистая микроструктура борных волокон обеспечивает высокую прочность при сдвиге на границе раздела с матрицей. Помимо непрерывного борного волокна применяют комплексные боростеклониты, в которых несколько параллельных борных волокон оплетаются стеклонитью, придающей формоустойчивость. Применение боростеклонитей облегчает технологический процесс изготовления материала. В качестве матриц для получения бороволокнитов используют модифицированные эпоксидные и полиимидные связующие. Бороволокниты КМБ-1 и КМБ-1к предназначены для длительной работы при температуре 200°С; КМБ-3 и КМБ-Зк не требуют высокого давления при переработке и могут работать при температуре не свыше 100°С; КМБ-2к работоспособен при 3000С.
Рис.12. зависимость механических свойств бороволокнита КМБ-1 от содержания борного волокнита: Е – модуль упругости; σ изг – предел прочности при изгибе; G – модуль сдвига; τ B – предел прочности при сдвиге
Влияние на механические свойства бороволокнита содержания волокна приведено на рис. 12, а влияние различных матриц - на рис. 13.
Рис.13. зависимость разрушающего напряжения при изгибе бороволокнитов на различных связующих от температуры: 1, 2 – эпоксидное; 3 – полиимидное; 4 – кремнийорганическое связующее Бороволокниты обладают высокими сопротивлениями усталости, они стойки к воздействию радиации, воды, органических растворителей и горючесмазочных материалов. Поскольку борные волокна являются полупроводниками, то бороволокниты обладают повышенной теплопроводностью и электропроводимостью: λ =43 кДж/(м*К); α =4*10-6 С-1 (вдоль волокон); ρ V= 1, 94*107 Ом*см; е= 12, 6÷ 20, 5 (при частоте тока 107 Гц); tgδ =0, 02÷ 0, 051 (при частоте тока 107 Гц). Для бороволокнитов прочность при сжатии в 2-2, 5 раза больше, чем для карбоволокнитов. Физико-механические свойства бороволокнитов приведены в табл.2. Изделия из бороволокнитов применяют в авиационной и космической технике (профили, панели, роторы и лопатки компрессоров, лопасти винтов и трансмиссионные валы вертолетов и т.д.). Органоволокниты Органоволокниты представляют собой композиционные материалы, состоящие из полимерного связующего и упрочнителей (наполнителей) в виде синтетических волокон. Такие материалы обладают малой массой, сравнительно высокими удельной прочностью и жесткостью, стабильны при действии знакопеременных нагрузок и резкой смене температуры. Для синтетических волокон потери прочности при текстильной переработке небольшие; они малочувствительны к повреждениям. В органоволокнитах значения модуля упругости и температурных коэффициентов линейного расширения упрочнителя и связующего близки. Происходит диффузия компонентов связующего в волокно и химическое взаимодействие между ними. Структура материала бездефектна. Пористость не превышает 1-3% (в других материалах 10-20%). Отсюда стабильность механических свойств органоволокнитов при резком перепаде температур, действии ударных и циклических нагрузок. Ударная вязкость высокая (400-700 кДж/м2). Недостатком этих материалов является сравнительно низкая прочность при сжатии и высокая ползучесть (особенно для эластичных волокон). Органоволокниты устойчивы в агрессивных средах и во влажном тропическом климате; диэлектрические свойства высокие, а теплопроводность низкая. Большинство органоволокнитов может длительно работать при температуре 100-150°С, а на основе полиимидного связующего и полиоксадиазольных волокон - при 200-300°С. В комбинированных материалах наряду с синтетическими волокнами применяют минеральные (стеклянные, карбоволокна и бороволокна). Такие материалы обладают большей прочностью и жесткостью. Органоволокниты применяют в качестве изоляционного и конструкционного материала в электрорадиопромышленности, авиационной технике, автостроении; из них изготовляют трубы, емкости для реактивов, покрытия корпусов судов и др. Литература 1. Гуляев А.П. «Металловедение», М.: 1968. 2. Дальский А.М. «Технология конструкционных материалов», М.: 1985. 3. Куманин И.Б. «Литейное производство», М.: 1971. 4. Лахтин Ю.М. «Материаловедение», М.: 1990. 5. Семенов «Ковка и объемная штамповка», М.: 1972.
ТЕМА: ЛАЗЕРНЫЕ ТЕХНОЛОГИИ
Содержание Введение...........................................................................................………. 1. Особенности лазерного излучения............................................................. 2. Газовые лазеры...................................................................................... 3. Полупроводниковые лазеры...................................................................... 4. Лазерные технологии............................................................................. 5. Использование лазера............................................................................ 5.1 Лазерный луч в роли сверла.................................................................. 5.2.Лазерная резка и сварка........................................................................ 5.3.Лазерный луч в роли хирургического скальпеля......................................... 5.4.Лазерное оружие................................................................................. Заключение....................................................................................... Список использованных источников.........................................................
Введение Острый тонкий пучок лучей рубинового цвета прорезал пространство...Миновав земную атмосферу, он устремляется в космос к далеким звездным мирам. Давление света, сконцентрированного на малой площадке, достигает миллиона атмосфер. Лучом можно проколоть или разрезать металлический лист из самого твердого и тугоплавкого металла. Фантастика? Нет, последнее достижение квантовой электроники, известное под названием «ЛАЗЕР» или, иначе «оптический квантовый генератор». Лазеры появились в 1960году. Их появлению предшествовали фундаментальные работы советских ученых В.А.Фабриканта, Н.Г.Басова, А.М.Прохорова, американского ученого Ч.Таунса. В частности, лазеры нашли применение для сверхдальней связи. Они позволили исследовать поверхность Луны, их устанавливают на искусственных спутниках Земли и на космических кораблях. В пути лазеры передают сигналы на Землю с расстояния в десятки миллионов километров и позволяют управлять движением кораблей и корректировать их траекторию. Мечта о концентрации энергии света зародилась еще в глубокой В фантастической литературе можно найти много описаний действия лучей разрушения и смерти. Все они, однако, включая и гиперболоид инженера Гарина, грешат против законов физики и прежде всего против основного ее закона - закона сохранение энергии. Невозможно путем обычных средств современной оптики - нагромождением только зеркал, линз или призм - беспредельно концентрировать энергию имеющихся в распоряжении современной техники источников света. Нельзя сконцентрировать при помощи зеркала солнечные лучи в один тонкий, как игла, луч и послать его на расстояние в несколько километров. Расчет показывает, что для объекта, находящегося от зеркала на расстоянии всего 1 км, потребовалось бы зеркало Как показал Г.Г.Слюсарев в своей книге «О возможном и невозможном в оптике», нельзя в действительности получить пучок параллельных лучей и еще сжать его в узкий шнур. В схемах геометрической оптики мы, конечно, пользуемся понятием точечного источника света, который, будучи помещен в главном фокусе вогнутого зеркала (притом параболического, а не гиперболического, как ошибочно полагал инженер Гарин) или в главном фокусе линзы, дает на чертеже пучок параллельных лучей. Но это только на чертеже, в действительности точечный источник и пучок параллельных Посмотрим теперь, как же решается задача генерации когерентного света Популярное:
|
Последнее изменение этой страницы: 2017-03-03; Просмотров: 691; Нарушение авторского права страницы