Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Антибиотики, подавляющие синтез белка на рибосомах.



Ингибиторы синтеза белка – многочисленная и разнообразная по химической структуре группа антибиотиков, нарушающих физиологические функции рибосом бактерий. Ингибиторы белкового синтеза обладают достаточно высокой избирательностью действия, однако в высоких дозах могут повреждать клетки макроорганизма.

Антибиотики, нарушающие синтез белка на малой субъединице рибосом.

Аминогликозиды необратимо связываются с малыми субъединицами, в результате чего в клетке синтезируется аномальный белок; нарушают структуру и функцию цитоплазматической мембраны бактерий. Двойное действие обеспечивает высокую антибактериальную активность аминогликозидов и увеличивает их токсичность. Однако токсичность препаратов уменьшается от первого поколения антибиотиков к четвертому:

1 поколение: стрептомицин, неомицин, канамицин, мономицин,

2 поколение: гентамицин,

3 поколение: тобрамицин, амикацин, нетилмицин,

4 поколение: изепамицин.

К препаратам первого поколения у микроорганизмов быстро развивается устойчивость. У современных аминогликозидов более широкий спектр антибактериального действия и меньше риск развития побочных эффектов. Являются высокоэффективными противотуберкулезными препаратами. Большинство аминогликозидов плохо всасываются из желудочно-кишечного тракта и применяются парэнтерально. Выводятся почками в неизмененном виде, что с успехом используется при лечении инфекций мочевыводящих путей.

Тетрациклины (окситетрациклин, тетрациклин, метациклин, доксициклин, моноциклин) относятся к полусинтетическим антибиотикам. Нарушают связывание тРНК с рибосомой, что нарушает синтез белка на малой субъединице рибосом, вызывают бактериостатический эффект. Имеют широкий спектр действия, но из-за высокой токсичности эти антибиотики целесообразно назначать для лечения особо опасных инфекций (чума, холера, брюшной тиф, холера, бруцеллез). Тетрациклины гепатотоксичны, нефротоксичны, ототоксичны. У детей они нарушают формирование скелета и зубов (образуют хелатные комплексы с кальцием).

Антибиотики, нарушающие синтез белка на большой субъединице рибосом.

Макролиды нарушают продвижение рибосомы по мРНК, в результате чего снижается синтез белка на большой субъединице рибосом. Действуют бактериостатически. Принято выделять следующие поколения макролидов:

1 поколение: эритромицин, олеандомицин,

2 поколение: спирамицин, рокситромицин, кларитромицин, медикамицин, джозамицин,

3 поколение: азитромицин,

4 поколение: телитромицин.

Спектр действия макролидов расширяется с каждым последующим поколением препаратов. Значимой особенностью современных макролидов (азитромицин, кларитромицин, рокситромицин) является их способность стимулировать фагоцитоз. Кроме того современные макролиды превосходят родоначальников группы по продолжительности действия. Они хорошо проникают в различные ткани и создают высокие концентрации в области очага инфекции. В результате сокращается курс лечения и снижается вероятность рецидива. Особенностью кларитромицина является его эффективность в отношении бактерий, вызывающих язву желудка и двенадцатиперстной кишки. Низкая токсичность является самой привлекательной чертой макролидов.

Линкозамиды также нарушают синтез белка на большой субъединице рибосом. Основной представитель группы (клиндамицин) высокотоксичен, поэтому его назначают для лечения тяжелых инфекций, вызванных анаэробными бактериями.

Хлорамфеникол блокирует связывание аминокислот и подавляет синтез белка на большой субъединице рибосом. Оказывает бактериостатический эффект. Действует на грам+ и грам- бактерии, хорошо проникает через тканевые барьеры и обладает высокой активностью, но имеет небольшую широту терапевтического действия. В качестве побочного эффекта следует отметить угнетение кроветворения вплоть до апластической анемии (особенно высок риск развития у детей). Кроме того хлорамфеникол ингибирует микросомальное окисление в печени, что может изменить метаболизм других лекарственных препаратов. В основном применяется для лечения псевдотуберкулеза, тяжелых кишечных инфекций.

Фузидиевая кислота угнетает синтез белка на большой субъединице рибосом, оказывает бактериостатический эффект. Обладает широким спектром антибактериального действия и низкой токсичностью. Быстро всасывается и проникает во все органы и ткани, в том числе спинномозговую жидкость. Важным свойством антибиотика является его способность проникать в костную ткань, что с успехом применяется при лечении остеомиелитов. При назначении фузидиевой кислоты с другими антибиотиками наблюдается значительное усиление действия.

 

 

Лекция №6.

Синтетические противомикробные средства.

Мотивация: Современные синтетические противомикробные средства по своей силе и спектру действия не уступают самым мощным антибиотикам и занимают свою важную нишу в терапии инфекционных заболеваний.

Важное место в лечении инфекционных заболеваний сегодня занимают синтетические противомикробные средства, к которым относятся следующие группы лекарственных средств: сульфаниламидные препараты, производные 8-оксихинолина, производные хинолона, фторхинолоны, производные нитрофурана, производные хиноксалина, оксазолидиноны.

Сульфаниламидные препараты.

Они стали первыми химиотерапевтическими антибактериальными средствами широкого спектра действия, внедренными в практику еще в 30-х годах прошлого века.

Ключевой особенностью сульфаниламидов является их химическое сродство с пара-аминобензойной кислотой (ПАБК), которая необходима прокариотам для синтеза пуриновых и пиримидиновых оснований – структурных компонентов нуклеиновых кислот. В основе механизма действия сульфаниламидов лежит принцип конкурентного антагонизма: вследствие структурного сходства сульфаниламиды захватываются микробной клеткой вместо ПАБК, в результате чего угнетается синтез нуклеиновых кислот, подавляется рост и размножение микроорганизмов (бактериостатический эффект). Сульфаниламиды обладают высокой избирательностью противомикробного действия.

Спектр антимикробного действия сульфаниламидов довольно широк и включает следующих возбудителей инфекционных заболеваний:

1) бактерии (патогенные кокки (грам+ и грам-), кишечная палочка, возбудители дизентерии (шигеллы), холерный вибрион, возбудители газовой гангрены (клостридии), возбудитель сибирской язвы, дифтерии, возбудитель катаральной пневмонии)

2) хламидии (возбудители трахомы, возбудители орнитоза, возбудители пахового лимфогранулематоза)

3) актиномицеты (грибы)

4) простейшие (токсоплазмы, плазмодии малярии).

Большой практический интерес представляют сульаниламиды резорбтивного действия. По продолжительности действия эти препараты делятся на:

1) сульфаниламиды короткого действия (назначаются 4-6 раз в сутки) - сульфадимидин, сульфатиазол, сульфаэтидол, сульфакарбамид, сульфазоксазол

2) сульфаниамиды средней продолжительности действия (назначаются 3-4 раза в сутки) - сульфадиазин, сульфаметоксазол, сульфамоксал

3) сульфаниламиды длительного действия (назначаются 1-2 раза в сутки) - сульфапиридазин, сульфамонометоксин, сульфадиметоксин

4) сульфаниламиды сверхдлительного действия (назначаются 1 раз в сутки) - сульфаметоксипиразин, сульфадоксин.

С увеличением продолжительности действия препаратов уменьшается ударная доза, назначаемая при их первом приеме.

Длительность действия сульфаниламидов определяется их способностью связываться с белками плазмы, скоростью метаболизма и выведения. Так сульфаниламиды длительного и сверхдлительного действия, в отличие от " коротких" конъюгируют с глюкуроновой кислотой. В результате образуются антибактериально активные глюкурониды, которые хорошо растворимы и не выпадают в осадок в моче, а значит эффективны при лечении инфекционных заболеваний мочевыводящих путей.

Назначение высоких доз сульфаниламидных препаратов - залог успеха противомикробной терапии, так как только в этих условиях создаются максимально высокие концентрации лекарственного средства вокруг бактериальной клетки, что лишает ее возможности захватывать ПАБК. При использовании препаратов длительного действия в организме создаются стабильные концентрации вещества. Однако если возникают побочные явления, продолжительный эффект играет отрицательную роль, так как при вынужденной отмене препарата должно пройти несколько дней, прежде чем закончится его действие. Эти препараты целесообразно использовать при хронических инфекциях и для профилактики инфекций (например, в послеоперационном периоде). Следует также учитывать, что концентрация препаратов продолжительного действия в спинномозговой жидкости невелика (5-10% от концентрации в крови). Этим они отличаются от сульфаниламидов непродолжительного действия, которые накапливаются в ликворе в высоких концентрациях (50-80% от концентрации в плазме). Сульфаниламиды резорбтивного действия назначают при менингите, заболеваниях органов дыхания, инфекциях мочевыводящих и желчевыводящих путей.

К сульфаниламидам, действующим в просвете кишечника, относятся фталилсульфатиазол, сульфагуанидин, фтазин. Отличительной особенностью этих препаратов является их плохая всасываемость из ЖКТ, поэтому в просвете кишечника создаются высокие концентрации веществ. Прямыми показаниями к назначению сульфаниламидов, действующих в просвете кишечника, являются дизентерия, энтероколит, дуоденит, колит, а также профилактика кишечной инфекции в послеоперационном периоде. Учитывая, что микроорганизмы при этих заболеваниях локализуются не только в просвете, но в стенке кишечника, их целесообразно сочетать с хорошвсасывающимися сульфаниламидами или антибиотиками. Применение этой группы сульфаниламидов нужно сочетать с витаминами группы В, так как подавляется рост и размножение кишечной палочки, участвующей в процессе синтеза этих витаминов.

Сульфаниламиды местного действия включают сульфацетамид (альбуцид), сульфадиазин серебра, сульфатиазол серебра. Эти вещества назначают в виде растворов и мазей для лечения и профилактики конъюнктивита, блефарита, гонорейного поражения глаз, язв роговицы, ожоговой и раневой инфекции глаз. Для достижения терапевтического эффекта местно сульфаниламиды используют в очень высоких концентрациях. Необходимо учитывать, что активность сульфаниламидов резко падает в присутствии гноя, некротических масс, так как там содержится большое количество ПАБК. Поэтому сульфаниламиды следует применять только после первичной обработки раны. Следует также отметить, что совместное применение сульфаниламидов с другими лекарственными средствами, производными ПАБК, также резко снижает их противомикробную активность (пример фармакологической несовместимости). Увеличить антимикробную активность сульфаниламидов для местного применения можно, включив в молекулу лекарственного средства атом серебра. Ионы серебра взаимодействуют с белками микрорганизмов, что приводит к нарушению структуры и функции белков и гибели бактерий. В результате непрямого потенцированного снергизма между сульфаниламидом и атомом серебра эффект таких препаратов как сульфадиазин серебра и сульфатиазол серебра становится бактерицидным.

Сульфаниламиды, комбинированные с салициловой кислотой: салазосульфапиридин, салазопиридазин, салазодиметоксин. В толстом кишечнике под влиянием микрофлоры происходит гидролиз этих соединений с высвобождением месалазина и сульфаниламидного компонента. Такие сульфаниламидные препараты обладают анибактериальным и противовоспалительным эффектами (основан на ингибировании синтеза простагландинов). Их применяют при неспецифическом язвенном колите, болезни Крона (гранулематозном колите).

Известными сульфаниламидами, комбинированными с триметопримом, являются: ко-тримоксазол, лидаприм, сульфатон, гросептол, потесепил. В микробной клетке триметоприм блокирует фермент, участвующий в синтезе пуриновых оснований. Наблюдаемый в данном случае вид взаимодействия лекарственных средств представляет собой непрямой потенцированный синергизм. Эффект становится бактерицидным, так как развивающиеся изменения в микроорганизмах несовместимы с жизнью и приводят к их гибели.

По своей активности сульфаниламидные препараты значительно уступают другим антимикробным средствам и обладают сравнительно высокой токсичностью. Их назначают главным образом при непереносимости антибиотиков или развитии толерантности к ним. Нередко сульфаниламиды комбинируют с антибиотиками.

Производные 8-оксихинолина.

Препараты этого ряда обладают антибактериальным и антипротозойным действием. Механизм бактериостатического действия производных 8-оксихинолина включает: селективное ингибирование синтеза бактериальной ДНК; образование неактивных комплексов с металлосодержащими ферментами возбудителя; блокаду ферментов окислительного фосфорелирования и нарушение образования АТФ; галогенизацию и денатурацию (в больших концентрациях) белков возбудителя. Представители: нитроксолин, интестопан, энтеросептол.

Нитроксолин выделяется в неизмененном виде с мочой, где накапливается в бактериостатических концентрациях. В связи с этим препарат применяют как уроантисептик при инфекциях мочевыводящих путей, для профилактики инфекций после операций на почках и мочевыводящих путях, после диагностических манипуляций. Препарат обладает широким спектром антибактериального действия, кроме того оказывает угнетающее влияние на некоторые дрожжеподобные грибы рода Candida. Он хорошо переносится и практически не вызывает побочных эффектов, но к нему быстро развивается устойчивость микроорганизмов.

Интестопан обладает антибактериальной и антипротозойной активностью и показан при острых и хонических энтероколитах, амебной и бациллярной дизентерии, гнилостной диспепсии. Так как препарат содержит ионы брома, во избежание развития отравления необходимо строго придерживаться режима дозирования.

Энтеросептол практически не всасывается из ЖКТ и не оказывает системного действия. Применяется при ферментативной и гнилостной диспепсиях, бациллярной дизентерии, протозойных колитах, для лечения амебоносителей. Часто комбинируют с другими противомикробными средствами. При длительном применении (свыше 4-х недель) может вызывать периферические невриты, миелопатию, поражения зрительного нерва, отравление йодом.

Производные хинолона.

Представители: кислота налидиксовая, кислота оксолиниевая, кислота пипемидиевая. Механизм действия включает: угнетение синтеза ДНК, взаимодействие с металлосодержащими ферментами возбудителя, участие в реакциях перекисного окисления липидов. Спектр действия включает только грам- бактерии. Эффективны в отношении кишечной палочки, протея, клебсиелл, шигелл, сальмонелл. Синегнойная палочка к данным препаратам устойчива. Ценным качеством препаратов является активность в отношении штаммов, устойчивых к антибиотикам и сульфаниламидным препаратам. Резистентность к препаратам развивается достаточно быстро. Выводятся лекарственные средства и их метаболиты главным образом почками, вследствие чего в моче создаются высокие концентрации. Поэтому основное применение - инфекции мочевыводящих путей и профилактика инфекций при операциях на почках и мочевом пузыре.

Фторхинолоны.

Были созданы в ходе изучения описанных выше производных хинолона. Оказалось, что добавление в хинолоновую структуру атома фтора существенно усиливает антибактериальный эффект препарата. На сегодняшний день фторхинолоны являются одними из самых активных химиотерапевтических средств, по силе действия не уступая самым мощным антибиотикам. Фторхинолоны делят на три поколения.

Первое поколение содержит 1 атом фтора: ципрофлоксацин, пефлоксацин, офлоксацин, норфлоксацин, ломефлоксацин.

Второе поколение содержит 2 атома фтора: левофлоксацин, спарфлоксацин.

Третье поколение содержит 3 атома фтора: моксифлоксацин, гатифлоксацин, гемифлоксацин, надифлоксацин.

Среди известных синтетических противомикробных средств фторхинолоны обладают самым широким спектром действия и значительной антибактериальной активностью. Они активны в отношении грам- и грам+ кокков, кишечной палочки, сальмонелл, шигелл, протея, клебсиелл, хеликобактерий, синегнойной палочки. Отдельные препараты (ципрофлоксацин, офлоксацин, ломефлоксацин) действуют на микобактерии туберкулеза и могут применяться в комбинированной терапии при лекарственно устойчивом туберкулезе. К фторхинолонам не чувствительны спирохеты, листерии и большинство анаэробов. Фторхинолоны действуют на вне- и внутриклеточно локализованные микроорганизмы. Резистентность микрофлоры развивается относительно медленно. В основе механизма действия фторхинолонов лежит блокада жизненно важных ферментов бактерий, участвующих в синтезе, сохранении и восстановлении структуры ДНК. Нарушение функционирования этих ферментных систем приводит к раскручиванию молекулы ДНК и гибели клетки. Из-за структурного и функционального родства ферментных систем клеток прокариотов и эукариотов, фторхинолоны зачастую утрачивают свою избирательность действия и повреждают клетки макроорганизма, вызывая многочисленные побочные эффекты. Наиболее значимые из них: фототоксичность (УФ излучение разрушает фторхинолоны с образованием свободных радикалов, повреждающих структуру кожи), артротоксичность (нарушение развития хрящевой ткани), ингибирование метаболизма теофиллина и повышение его концентрации в крови. Эти препараты могут вызвать изменение картины крови, диспепсические и аллергические реакции, неврологические расстройства. Противопоказаны беременным и детям.

Наиболее целесообразно назначать препараты этой группы при таких тяжелых инфекциях как сепсис, перитонит, менингит, остеомиелит, туберкулез и др. Фторхинолоны показаны при инфекциях мочевыводящих путей, ЖКТ, кожи, мягких тканей, костей и суставов. В пульмонологической практике наиболее популярны фторхинолоны 2 и 3 поколений.

Высокая эффективность фторхинолонов при инфекциях практически любой локализации обусловлена следующими особенностями их фармакокинетики:

1) для препаратов этой группы характерен выраженный постантибиотический эффект

2) препараты хорошо проникают в различные органы и ткани (легкие, почки, кости, предстательную железу)

3) создают высокие концентрации в крови и тканях при приеме внутрь, причем биодоступность не зависит от приема пищи

4) обладают иммуномодулирующим эффектом, повышая фагоцитарную активность нейтрофилов

Выраженная бактерицидная активность фторхинолонов позволила разработать для ряда препаратов лекарственные формы для наружного применения.

Производные нитрофурана.

Механизм действия нитрофуранов включает:

1) образование комплексов с нуклеиновыми кислотами, в результате чего происходит нарушение структуры ДНК возбудителя, угнетение синтеза белков, нарушение роста и размножения бактерий (бактериостатический эффект)

2) угнетение цепи дыхания и цикла Кребса, что приводит к гибели клетки (бактерицидный эффект)

Особенности механизма действия позволяют сочетать нитрофураны с другими антибактериальными средствами.

Нитрофураны имеют широкий спектр антимикробного действия, который включает бактерии (грам+ кокки и гам- палочки), простейшие (лямблии, трихомонады), даже вирусы. Производные нитрофурана способны действовать на штаммы микроорганизмов, устойчивые к некоторым антибиотикам и сульфаниламидам. На анаэробы и синегнойную палочку нитрофураны не действуют. Они подавляют продукцию микроорганизмами токсинов, поэтому могут быстро устранить явления интоксикации при сохранении возбудителя в организме. Под влиянием нитрофуранов микробы снижают способность вырабатывать антифаги и теряют способность к фагоцитозу; нитрофураны подавляют развитие резистентности возбудителей к антибиотикам. Для нитрофуранов характерна низкая токсичность. Кроме того они повышают сопротивляемость организма к инфекциям. Одни препараты данной группы используются преимущественно в качестве антисептиков для наружного применения, другие – в основном для лечения инфекций кишечника и мочевыводящих путей.

Нитрофуразон (фурацилин) применяют наружно в качестве антисептика для обработки ран, кожи слизистых оболочек, промывания серозных полостей и суставных полостей.

Фуразолидон, нифуроксазид и нифурантел применяют при кишечных инфекциях бактериальной и протозойной этиологии (бациллярной дизентерии, паратифе, токсикоинфекциях, энтероколите), так как плохо всасываются в ЖКТ и создают высокие концентрации в просвете кишечника. Кроме того, фуразолидон и нифурантел эффективны при трихомонадном кольпите и лямблиозе.

Нитрофурантоин, нифуртоинол и фуразидин применяют при инфекциях мочевыводящих путей, а также для профилактики инфекционных осложнений при урологических операциях, цистоскопии, катетеризации мочевого пузыря. Препараты в значительных количествах выделяются почками с мочой, где создаются их бактериостатические и бактерицидные концентрации.

Фуразидин эффективен при местном применении для промывания и спринцевания в хирургической практике. Калиевую соль фуразидина можно вводить внутривенно при тяжелых формах инфекционных заболеваний (сепсис, раневая и гнойная инфекции, пневмонии).

Производные хиноксалина.

Эта группа антибактериальных средств представлена хиноксидином и диоксидином. Производные хиноксалина обладают широким спектром противомикробного действия, который включает вульгарного протея, синегнойную, кишечную палочку, палочку дизентерии и клебсиеллы, сальмонеллы, стафилококки, стрептококки, патогенные анаэробы, в том числе возбудитель газовой гангрены. Данные препараты активны в отношении бактерий, устойчивых к другим химиотерапевтическим средствам, включая антибиотики.

Бактерицидный эффект производных хиноксалина обусловлен активацией свободно-радикального окисления в микробной клетке, в результате чего нарушается синтез ДНК и происходят глубокие изменения в цитоплазме клетки, что приводит к гибели возбудителя. Активность лекарственных средств данной группы усиливается в анаэробной среде в связи с их способностью вызывать образование активных форм кислорода. В связи с высокой токсичностью производные хиноксалина используют только по жизненным показаниям для лечения тяжелых форм анаэробной или смешанной аэробно-анаэробной инфекции, вызванной полирезистентными штаммами при неэффективности других антимикробных средств. Назначают только взрослым (после пробы на переносимость) при стационарном лечении под контролем врача.

Показаниями к применению производных хиноксалина служат тяжелые гнойно-воспалительные процессы различной локализации, такие как гнойные плевриты, эпиема плевры, абсцессы легкого, перитониты, циститы, пиелиты, пиелоциститы, холециститы, холангиты, раны с наличием глубоких полостей, абсцессы мягких тканей, флегмоны, тяжелые дисбактериозы, сепсис, послеоперационные раны мочевыводящих и желчевыводящих путей, профилактика инфекционных осложнений после катетеризации.

Оксазолидиноны.

Это новый класс активных противомикробных препаратов. Первый препарат этой группы линезолид оказывает бактериостатическое действие преимущественно на грам+ бактерии и в меньшей степени на грам-. Бактерицидная активность отмечена лишь в отношении некоторых микроорганизмов.

Механизм действия основан на необратимом связывании с субъединицами рибосом, что приводит к угнетению синтеза белка в микробной клетке. Этот уникальный механизм препятствует развитию перекрестной резистентности с макролидами, аминогликозидами, линкозамидами, тетрациклинами, хлорамфениколом. Устойчивость возбудителей к линезолиду развивается очень медленно. Линезолид активен при госпитальной и внебольничной пневмонии (в комбинациях с антибиотиками, активными в отношении грам- микроорганизмов), инфекциях кожи и мягких тканей, мочевыводящих путей, эндокардите. Линезолид хорошо распределяется в тканях, накапливается в бронхолегочном эпителии, проникает в кожу, мягкие ткани, сердце, кишечник, печень, почки, ЦНС, синовиальную жидкость, кости, желчный пузырь. Быстро и полно всасывается из ЖКТ (100% биодоступность), выводится в основном с мочой. Применение линезолида может вызвать кандидоз, извращение вкуса, диспепсию, изменение общего билирубина, АЛТ, АСТ, ЩФ, анемию, тромбоцитопению. В целом препарат переносится хорошо.

Лекция №7.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-08; Просмотров: 3022; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.033 с.)
Главная | Случайная страница | Обратная связь