Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Однофазные электрические цепи переменного тока



Однофазные электрические цепи переменного тока

Большинство потребителей электрической энергии работает на переменном токе. В настоящее время почти вся электрическая энергия вырабатывается в виде энергии переменного тока. Это объясняется преимуществом производства и распределения этой энергии. Переменный ток получают на электростанциях, преобразуя с помощью генераторов механическую энергию в электрическую. Основное преимущество переменного тока по сравнению с постоянным заключается в возможности с помощью трансформаторов повышать или понижать напряжение, с минимальными потерями передавать электрическую энергию на большие расстояния, в трехфазных источниках питания получать сразу два напряжения: линейное и фазное. Кроме того, генераторы и двигатели переменного тока более просты по устройству, надежней в работе и проще в эксплуатации по сравнению с машинами постоянного тока.

В электрических цепях переменного тока наиболее часто используют синусоидальную форму, характеризующуюся тем, что все токи и напряжения являются синусоидальными функциями времени. В генераторах переменного тока получают ЭДС, изменяющуюся во времени по закону синуса, и тем самым обеспечивают наиболее выгодный эксплуатационный режим работы электрических установок. Кроме того, синусоидальная форма тока и напряжения позволяет производить точный расчет электрических цепей с использованием метода комплексных чисел и приближенный расчет на основе метода векторных диаграмм. При этом для расчета используются законы Ома и Кирхгофа, но записанные в векторной или комплексной форме.

Способы представления синусоидальных токов, напряжений, ЭДС

В современной технике широко используют разнообразные по форме переменные токи и напряжения: синусоидальные, прямоугольные, треугольные и др. Значение тока, напряжения, ЭДС в любой момент времени t называется мгновенным значением и обозначается малыми строчными буквами, соответственно

i = i(t); u = u(t); e = e(t).

Токи, напряжения и ЭДС, мгновенные значения которых повторяются через равные промежутки времени, называют периодическими, а наименьший промежуток времени, через который эти повторения происходят, называют периодом Т.

Если кривая изменения периодического тока описывается синусоидой, то ток называют синусоидальным. Если кривая отличается от синусоиды, то ток несинусоидальный.

В промышленных масштабах электрическая энергия производится, передается и расходуется потребителями в виде синусоидальных токов, напряжений и ЭДС,

При расчете и анализе электрических цепей применяют несколько способов представления синусоидальных электрических величин.

Аналитический способ

Для тока

(2.1)

i(t) = Im sin(ω t + ψ i),

для напряжения

(2.2)

u(t) = Um sin (ω t +ψ u),

для ЭДС

(2.3)

e(t) = Em sin (ω t +ψ e),

В уравнениях (2.1 – 2.3) обозначено:

Im, Um, Em – амплитуды тока, напряжения, ЭДС;
значение в скобках – фаза (полная фаза);
ψ i, ψ u, ψ e – начальная фаза тока, напряжения, ЭДС;
ω – циклическая частота, ω = 2π f;
f – частота, f = 1 / T; Т – период.

Величины i, Im – измеряются в амперах, величины U, Um, e, Em – в вольтах; величина Т (период) измеряется в секундах (с); частота f – в герцах (Гц), циклическая частота ω имеет размерность рад/с. Значения начальных фаз ψ i, ψ u, ψ e могут измеряться в радианах или градусах. Величина ψ i, ψ u, ψ e зависит от начала отсчета времени t = 0. Положительное значение откладывается влево, отрицательное – вправо.

Временная диаграмма

Временная диаграмма представляет графическое изображение синусоидальной величины в заданном масштабе в зависимости от времени (рис. 2.1).

i(t) = Im sin(ω t - ψ i).

Графоаналитический способ


Рис. 2.2

Графически синусоидальные величины изображаются в виде вращающегося вектора (рис. 2.2). Предполагается вращение против часовой стрелки с частотой вращения ω. Величина вектора в заданном масштабе представляет амплитудное значение. Проекция на вертикальную ось есть мгновенное значение величины.

Совокупность векторов, изображающих синусоидальные величины (ток, напряжение, ЭДС) одной и той же частоты называют векторной диаграммой.

Векторные величины отмечаются точкой над соответствующими переменными.

Использование векторных диаграмм позволяет существенно упросить анализ цепей переменного тока, сделать его простым и наглядным.

В основе графоаналитического способа анализа цепей переменного тока лежит построение векторных диаграмм.

Пример (рис. 2.3)


Рис. 2.3

i1(t) = Im1 sin(ω t)
i2(t) = Im2 sin(ω t + ψ 2)

i(t) =?

Первый закон Кирхгофа выполняется для мгновенных значений токов:

i(t) = i1(t) + i2(t) = Im1 sin(ω t) + Im2 sin(ω t - ψ 2) = Im sin(ω t + ψ ).

Приравниваем проекции на вертикальную и горизонтальные оси (рис. 2.4):

(2.4)

Im sin ψ = Im2 sin ψ 2;

(2.5)

Im cos ψ = Im2 cos ψ 2 + Im1;


Рис. 2.4

Из равенств (2.4 – 2.5) получаем

;
.

 

Индуктивность

Вокруг всякого проводника с током образуется магнитное поле, которое характеризуется вектором магнитной индукции В и магнитным потоком Ф:

.

Если поле образуют несколько (w) проводников с одинаковым током, то используют понятие потокосцепления ψ

(2.7)

ψ = w Ф.

Отношение потокосцепления к току, который его создает называют индуктивностью катушки

(2.8)

L = ψ / i.

При изменении во времени потокосцепления согласно закону Фарадея возникает ЭДС самоиндукции

eL = - dψ / dt.

С учетом соотношения (2.8) для eL получаем

(2.9)

eL = - L · di / dt.

Эта ЭДС всегда препятствует изменению тока (закон Ленца). Поэтому, чтобы через проводники все время тек ток, необходимо к проводникам прикладывать компенсирующее напряжение

(2.10)

uL = -eL.

Сопоставляя уравнения (2.9) и (2.10) получаем

(2.11)

uL = L · di / dt

Это соотношение является аналогом закона Ома для индуктивности. Конструктивно индуктивность выполняется в виде катушки с проводом.

Условное обозначение индуктивности

Катушка с проводом кроме свойства создавать магнитное поле обладает активным сопротивлением R.

Условное обозначение реальной индуктивности.

Единицей измерения индуктивности является Генри (Гн). Часто используют дробные единицы

1 мкГн = 10–6 Гн; 1 мкГн = 10–3 Гн.

Емкость

Все проводники с электрическим зарядом создают электрическое поле. Характеристикой этого поля является разность потенциалов (напряжение). Электрическую емкость определяют отношением заряда проводника к напряжению

C = Q / UC.

С учетом соотношения

i = dQ / dt

получаем формулу связи тока с напряжением

i = C · duC / dt.

Для удобства ее интегрируют и получают

(2.12)

uC = 1 / C · ∫ i dt.

Это соотношение является аналогом закона Ома для емкости.

Конструктивно емкость выполняется в виде двух проводников разделенных слоем диэлектрика. Форма проводников может быть плоской, трубчатой, шарообразной и др.

Единицей измерения емкости является фарада:

1Ф = 1Кл / 1В = 1Кулон / 1Вольт.

Оказалось, что фарада является большой единицей, например, емкость земного шара равна ≈ 0, 7 Ф. Поэтому чаще всего используют дробные значения

1 пФ = 10–12 Ф, (пФ – пикофарада);
1 нФ = 10–9 Ф, (нФ – нанофарада);
1 мкФ = 10–6 Ф, (мкФ – микрофарада).

Условным обозначением емкости является символ

Элемент R (резистор)

Зададим напряжение и ток в виде соотношений

u(t) = Um sin(ω t + ψ u),

i(t) = Im sin(ω t + ψ i).

Известно, что для резистора ψ u = ψ i, тогда для р получим

(2.32)

p(t) = u(t) i(t) = Um Im sin2(ω t + ψ i).

Из уравнения (2.32) видно, что мгновенная мощность всегда больше нуля и изменяется во времени. В таких случаях принять рассматривать среднюю за период Т мощность

(2.33)

.

Если записать Um и Im через действующие значения U и I: , , то получим

(2.34)

P = U I.

По форме уравнение (2.34) совпадает с мощностью на постоянном токе. Величину Р равную произведению действующих значений тока и напряжения называют активной мощностью. Единицей ее измерения является Ватт (Вт).

Элемент L (индуктивность)

Известно, что в индуктивности соотношение фаз ψ u = ψ i + 90°. Для мгновенной мощности имеет

(2.35)

.

Усредняя уравнение (2.35) по времени за период Т получим

.

Для количественной оценки мощности в индуктивности используют величину QL равную максимальному значению рL

(2.36)

QL = (Um Im) / 2

и называют ее реактивной (индуктивной) мощностью. Единицей ее измерения выбрали ВАр (вольт-ампер реактивный). Уравнение (2.36) можно записать через действующие значения U и I и используя формулу UL = I XL получим

(2.37)

QL = I2 XL.

Элемент С (ёмкость)

Известно, что в емкости соотношение фаз ψ u = ψ i - 90°. Для мгновенной мощности получаем

pC(t) = u(t) I(t) = (Um Im) / 2 · sin(2ω t).

Среднее значение за период здесь также равно нулю. По аналогии с уравнением (2.36) вводят величину QC = I2 XC, которую называют реактивной (емкостной) мощностью. Единицей ее измерения также является ВАр.

Если в цепи присутствуют элементы R, L и С, то активная и реактивная мощности определяются уравнениями

(2.37)

P = U I cos φ,

(2.38)

Q = QL - QC,

(2.39)

Q = U I sin φ,

где φ – угол сдвига фаз.

Вводят понятие полной мощности цепи

(2.40)

.

С учетом уравнений (2.37) и (2.39), (2.40) можно записать в виде

(2.41)

S = U I.

Единицей измерения полной мощности является ВА – вольт-ампер.

Закон Ома

Под законом Ома в комплексной форме понимают:

Í = Ú / Z

Комплексное сопротивление участка цепи представляет собой комплексное число, вещественная часть которого соответствует величине активного сопротивления, а коэффициент при мнимой части – реактивному сопротивлению.

По виду записи комплексного сопротивления можно судить о характере участка цепи:

R + j X — активно-индуктивное сопротивление;
R – j X — активно-емкостное.

Примеры.

Однофазные электрические цепи переменного тока

Большинство потребителей электрической энергии работает на переменном токе. В настоящее время почти вся электрическая энергия вырабатывается в виде энергии переменного тока. Это объясняется преимуществом производства и распределения этой энергии. Переменный ток получают на электростанциях, преобразуя с помощью генераторов механическую энергию в электрическую. Основное преимущество переменного тока по сравнению с постоянным заключается в возможности с помощью трансформаторов повышать или понижать напряжение, с минимальными потерями передавать электрическую энергию на большие расстояния, в трехфазных источниках питания получать сразу два напряжения: линейное и фазное. Кроме того, генераторы и двигатели переменного тока более просты по устройству, надежней в работе и проще в эксплуатации по сравнению с машинами постоянного тока.

В электрических цепях переменного тока наиболее часто используют синусоидальную форму, характеризующуюся тем, что все токи и напряжения являются синусоидальными функциями времени. В генераторах переменного тока получают ЭДС, изменяющуюся во времени по закону синуса, и тем самым обеспечивают наиболее выгодный эксплуатационный режим работы электрических установок. Кроме того, синусоидальная форма тока и напряжения позволяет производить точный расчет электрических цепей с использованием метода комплексных чисел и приближенный расчет на основе метода векторных диаграмм. При этом для расчета используются законы Ома и Кирхгофа, но записанные в векторной или комплексной форме.


Поделиться:



Популярное:

  1. Автоматические выключатели с тепловыми расцепителями
  2. Аккумулирующие электрические станции
  3. Анализ денежных потоков и расчет ликвидного денежного потока.
  4. АНАЛИЗ И РАСЧЁТ ОДНОФАЗНОЙ ЦЕПИ ПЕРЕМЕННОГО ТОКА
  5. Бесконтактный двигатель постоянного тока
  6. В медицинской практике с целью прогревания конечностей при их отморожении действуют токами ультравысокой частоты (УВЧ). Известно, что при этом не наблюдается сокращения мышц.
  7. В сеть постоянного тока радиоприёмник включать нельзя.
  8. В.2. Электрические машины — электромеханические преобразователи энергии
  9. Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот.
  10. Возбуждением при различных сопротивлениях в цепи якоря
  11. Врачевание в первобытном обществе и странах Древнего Востока
  12. Выбор аппаратов в цепи трансформатора собственных нужд


Последнее изменение этой страницы: 2017-03-08; Просмотров: 1766; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.037 с.)
Главная | Случайная страница | Обратная связь