Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Основные вехи развития МЛЭ и особенности МЛЭ в решении задач твердотельной электроники



Лекции по МЛЭ

ВВЕДЕНИЕ

 

Наиболее перспективным направлением микроэлектроники является наноэлектроника. Наноэлектроника находится на стыке физики, химии, материаловедения, биологии, электронной и компьютерной техники. Уже в начале третьего тысячелетия нанотехнологии будут определять уровень развития всего человечества. Нанотехнология предполагает построение электронных устройств из отдельных атомов им молекул. Причем физической основой работы наноэлектронных приборов и устройств является квантовая физика. Нанотехнологии могут широко использоваться также в материаловедении, биологии, в микросхемотехнике и в других разделах человеческих знаний. США и Япония уже в ближайшие годы планируют вложить колоссальные средства в развитие наноэлектроники, т.к. видят в этом основную стратегическую задачу дальнейшего развития человеческого общества.

Объектами профессиональной деятельности выпускников по специальности 202100 являются наноматериалы, нанокомпоненты, элементы и устройства на их основе, технологические процессы их изготовления, методы исследования, моделирование, проектирование и конструирование приборов микро- и наноэлектроники, математическое моделирование процессов и объектов наноэлектроники. Выпускники по специальности 202100 получают фундаментальную подготовку в области полупроводниковой электроники, микроэлектроники и наноэлектроники, что позволит им пользоваться устойчивым спросом на рынке труда, так как они могут работать в научно-исследовательской, проектно-конструкторской, производственно-технической, организационно-управленческой, эксплуатационной и сервисной областях. Высокую востребованность нашим выпускникам придает знание ими основ информационных, производственных, микроэлектронных и нанотехнологий.

 


Основные вехи развития МЛЭ и особенности МЛЭ в решении задач твердотельной электроники

 

МЛЭ обеспечивает предельно высокое качество и самих пленок и границ между ними, тем самым она удовлетворяет требованиям, необходимым для создания современных полупроводниковых гетероструктур: одиночных гетеропереходов, изолированных потенциальных ям, периодических и многослойных систем. Поскольку именно структуры с гетеропереходами определяют в настоящее время прогресс в твердотельной электронике, поэтому важно знать и понимать, каким способом могут они реализованы.

По сути дела МЛЭ представляет собой результат усовершенствования старого способа испарения в вакууме, широко применявшегося для изготовления металлических пленок. Использование чистых источников напыляемых материалов, сверхвысокий вакуум, точный контроль температуры подложки, различные методы диагностики растущей пленки в сочетании с компьютерной системой управления параметрами процесса — все это вместе взятое привело к созданию качественно новой технологии — МЛЭ.

За последние 40 лет характерные масштабы в твердотельной электронике уменьшились на четыре порядка: от сотни микрометров в первых транзисторах до сотни ангстрем в гетероструктурах с квантовыми ямами. Реализация структур таких масштабов с помощью жидкофазной эпитаксии или газотранспортными методами оказалась весьма затруднительной, тогда как МЛЭ позволяет выращивать пленки любой толщины, вплоть до многоатомных с заданным химическим составом и концентрацией примесей. Методом МЛЭ удается осуществлять гетероэпитаксию разнородных материалов, выращивая, например, соединения А3В5 на кремниевых или диэлектрических подложках, что чрезвычайно важно для монолитной интеграции оптоэлектронных и интегрально-оптических системах GaAs с вычислительными модулями. Методом МЛЭ выращивают различные многослойные и периодические структуры (типа квантовых сверхрешеток) с заданными параметрами, что дает возможности управления электрическим спектром носителей заряда.

Как ранее говорилось, вакуумное напыление весьма широко исследовалось в 40-х годах, хотя более совершенная эпитаксия свинца и олова была в 1964 году с помощью молекулярных пучков, создаваемых специальными (эффузионными) ячейками.

Первое систематическое исследование роста сложных полупроводников типа А3В5 проведено Гюнтером в 1958 году. С помощью «трехтемпературной» методики он получил стехиометрические пленки сложных полупроводников. В 1968 году, улучшив вакуум в методе Гюнтера, Давэй и Панкэй смогли вырастить эпитаксиальные слои на чистых монокристаллических подложках GaAs. Приблизительно в то же время Артур с целью изучения механизма роста исследования кинетики островков Ga и As на поверхностях GaAs. Это послужило основой дальнейших достижений по выращиванию методом МЛЭ совершенных пленок GaAs и других соединений А3В5.

Широкое использование МЛЭ началось с появлением промышленного вакуумного оборудования в начале 70-х годов. МЛЭ является в своей основе утонченной модификацией метода вакуумного напыления. Степень усложнения определяется только целями, поставленными в конкретном исследовании. Рост пленок при МЛЭ, представляющей собой вакуумное напыление, определяется в основном кинетикой взаимодействия пучков с поверхностью кристалла в отличие от других методов, таких как ИСЭ или химическое осаждение, которые происходят в условиях, близких к равновесным. Кроме того, поскольку процесс МЛЭ происходит в сверхвысоком вакууме, его можно контролировать с помощью таких диагностических методов, как дифракция отраженных быстрых электронов (ДОБЭ), электронная оже-спектроскопия (ЭОС), вторично-ионная масс-спектроскопия (ВИМС), рентгеновская фотоэлектрическая спектроскопия (ФЭС) и т.д., поместив в систему соответствующую аппаратуру вместе с масс-анализатором для контроля интенсивности пучков и ионной пушкой для очистки поверхности.

Перечислим важнейшие задачи, решение которых обеспечивается МЛЭ:

а) получение монокристаллов высокой чистоты — за счет роста в сверхвысоком вакууме и высокой чистоты потоков вещества;

б) выращивание сверхтонких структур с резкими изменениями состава на границах — за счет относительно низких температур роста, препятствующих взаимной диффузии;

в) получение гладких бездефектных поверхностей для гетероэпитаксии — за счет ступенчатого механизма роста, исключающего возможность зародышеобразования;

г) получение сверхтонких слоев с контролируемой толщиной за счет точности управления потоками и относительно малых скоростей роста;

д) создание структур с заданными внутренними напряжениями растяжения и сжатия.

 

 

Основы МЛЭ

Предшественником МЛЭ является метод трех температур. Метод трех температур заключается в конденсации соединения стехиометрического состава при температуре подложки Т3 из паров двух элементов, испаряющихся при температуре Т1 и Т2.

Этот метод применим, когда свободная энергия диссоциации соединения в соответствии с уравнением

АВ(тв.) → А(газ) + ½ В2(газ)

оказывается большей, чем свободные энергии испарения составляющих

АВ(тв.) → А(газ) и В2(тв.) → ½ В2(газ).

Другими словами, давление паров составляющих А и В под соединением АВ при Т3 существенно ниже, чем над чистыми элементами при этой температуре, т.е. пары А и В, задаваемые температурами Т1 и Т2, пересыщены по отношению к соединению при Т3, но не к элементам А и В. Метод работает и в случае, если вышесказанное верно только для одного компонента А или В.

МЛЭ появилось как развитие метода химического осаждения пленок в сверхвысоком вакууме. Отметим, что давление остаточных газов ниже 10-7 торр считается высоким вакуумом, а давление 10-11 торр и ниже относится к сверхвысокому вакууму. Длина свободного (без взаимных соударений) пробега атомов и молекул в таких условиях достигает десятков метров.

При МЛЭ реагенты вводятся в рабочую камеру в виде молекулярных или атомных потоков. Эти потоки формируются путем испарения материала внутри замкнутой ячейки с очень малым входным отверстием. Такая ячейка называется эффузионной. Испарения внутри же молекулы и атомы, выходя из отверстия сверхвысокий вакуум, движутся без соударений, создавая, таким образом направленные, хорошо.................. потоки частиц.

Для МЛЭ обычно используют несколько эффузионных ячеек — по одной на каждый испаряющийся (без нарушения стехиометрии) материал. Кроме ячеек, для осаждения собственно материалов должны присутствовать также источники легирующих примесей. Наряду с испарением осаждаемого материала внутри эффузионной ячейки, молекулярные потоки могут формироваться по такому же принципу и из паров или газообразных соединений. Для этого их вводят в сверхвысоковакуумную камеру через специальные подогреваемые сопла. Конструкция типичной установки для МЛЭ схематически показана на рис. 1.

 

Рис. 1.

 

Её основными частями являются эффузионные или газовые ячейки, подогреваемый подложкодержатель и система мониторинга процесса осаждения. Все эти устройства размещены в сверхвысоковакуумной камере.

Конденсация атомов и молекул на нагретой подложке в требуемых стехиометрических соотношениях представляет достаточно сложную задачу. Однако проведение осаждения в сверхвысоком вакууме позволяет использовать современные методы ионного и электронного исследования твердого тела непосредственно в процессе осаждения или после его завершения. Для этих целей в систему мониторинга включают: Оже-электронную спектрометрию, дифракцию низкоэнергетических электронов, дифракцию отраженных высокоэнергетических электронов, спектроскопию возбуждаемой рентгеновскими или ультрафиолетовым излучением фотоэмиссии, вторичную ионную масс-спектрометрию. Проведение анализа осажденной пленки непосредственно в рабочей камере называют in situ (по месту).

Для оперативного контроля и управления процессом осаждения обычно используют дифракцию отраженных высокоэнергетических электронов. Для этого электроны с энергией 10-15 кэВ направляют под скользящим углом на подложку с осажденной пленкой.

Дифракция отраженных электронов регистрируется на экране, расположенном на противоположной от электронной пушки стенке камере. Положение и интенсивность дифракционных максимумов содержат информацию о структуре и толщине поверхностного слоя, что и используется для мониторинга осаждения.

МЛЭ широко применяется для формирования высококачественных сверхрешеток. МЛЭ обеспечивает формирование и сплошных наноразмерных пленок, и (при определенных условиях осаждения) квантовых шнуров, и квантовых точек.

 

Список литературы

1. Cho A.Y., Arthur J.R. Molecular beam epitaxy//in Progress in solid state chemisty/Ed. by G. Somorjaj, J. McCaldin. Pergamon, 1975. V. 10. P. 157-190.

2. Foxon C.T. Molecular beam epitaxy//Acta Electronica. 1978. V. 21. P. 139-150.

3. Guenther K.G.//Z.Naturforsch. 1958. V. 13a. P. 1081.

4. Frank F.C., van der Merwe J.H.//Proc. Soc. London, Ser. A 198. 1949. P. 205.

5. Folmer M. Nuclei formation in supersaturated states/M. Folmer, A. Weber//Zeitschzift fur Physikalishe Chemie. 1926. V. 119. P. 227-301.

6. Stranski I.N., Krastanov L. Theory of orientation separation in Ionic Crystals//Sitzber. Acad. Wiss. Wien, Math-Natur W. 1938. V. 146. P. 797-810.

7. Matthews J.W., Blakeslee A.E.//J. of Crystal Growth. 1974. V. 27. P. 118-125.

8. People R., Bean J.C.//Appl. Phys. Lett. 1985. V. 47. P. 322-324.

9. Майссел Л., Глэнг Р. Технология тонких пленок. М.: Советское радио, 1977.

10. Foxon C.T.//Acta Electronica. 1978. V. 21. P. 139-150.

11. Крегер Ф. Химия несовершенных кристаллов. М., 1987. 651 с.

12. Копьев П.С., Леденцов Н.Н.//ФТП. 1988. Т. 22. С. 1729-1742.

13. Foxon C.T.//Acta Electronica. 1978. V. 21. P. 139-150.

14. Heckingbottom R., Davies G.J., Prior K.A.//Surf. Sci. 1983. V. 132. P. 375-389.

15. Ivanov S.V., Boudza A.A., Kutt R.N., Ledentsov N.N., Meltser B. Ya., Shaposhnikov S.V., Ruvimov S.S., Kop'ev P.S.//J. Cryst. Growth. 1995. V. 156. P. 191-205.

16. Ivanov S., Kop'ev P. Type-II (AlGa)Sb/InAs Quantum well structures and superlattices for opto- and microelectronics grown by molecular beam epitaxy. Chapter 4. In «Antimonide-related strained-layer heterostructures»/Ed. by M.O. Manasreh//Ser. «Optoelectronic properties of semiconductors and superlattices». V. 3. Gordon & Breach Science Publishers, 1997. P. 95-170.

17. Неклюдов П.В., Иванов С.В., Мельцер Б.Я., Копьев П.С.//ФТП. 1997. Т. 31. С. 1242-1245.

18. Ivanov S., Kop'ev P., Ledentsov N.N.//J. Cryst. Growth. 1990. V. 104. P. 345-354.

19. Ivanov S., Kop'ev P., Ledentsov N.N.//J. Cryst. Growth. 1991. V. 184. P. 661-669.

20. Ivanov S., Kop'ev P., Ledentsov N.N.//J. Cryst. Growth. 1991. V. 111. P. 151-161.

21. Vurgaftman I., Meyer J.R., Ram-Mohan L.R.//J. Appl. Phys. 2001. 89(11). P. 5815.

22. Ivanov S.V., Sorokin S.V., Kop'ev P.S., Kim J.R., Jung H.D., Park H.S.//J.Crystal Growth. 1996. V. 159. P. 16-20.

23. Сорокин В.С., Сорокин С.В., Кайгородов В.А. Материалы электронной техники. 2000. Вып. 4. С. 50-54.

24. Семенов А.Н., Соловьев В.А., Мельцер Б.Я., Сорокин В.С., Иванов С.В.//ФТП. 2004. Т. 38, № 3. С. 278-284.

25. Almuneau G., Hall E., Mathis S., Coldren L.A.//J. Crystal Growth. 2000. V. 208. P. 113-116.

26. Chiu T.H., Tsang W.T., Cunningham J.E., Robertson A.Jr.//J. Appl. Phys. 1987, V. 62. P. 2302-2307.

27. Evans K.R., Stutz C.E., Yu P.W., Wie C.R.//J. Vac. Sci. Technol. B. 1990. V. 8. P. 271-275.

28. Egorov A. Yu., Zhukov A.E., Kop'ev P.S., Ledentsov N.N., Maksimov M.V., Ustinov V.M.//Semiconductors. 1994. V.28. P. 363.

29. Horikoshi Y.//J. of Crystal Growth. 1999. V. 201/202. P. 150-158.

30. Кузнецов В.В., Москвин П.П., Сорокин В.С. Неравновесные явления при жидкостной гетероэпитаксии полупроводниковых твердых растворов. М.: Металлургия, 1991.

31. Jordan A.S., Ilegems M.//J. Phys. Chem. Solids. 1975. V. 36. P. 329-342.

32. Stringfellow G.B.//J. of Crystal Growth. 1974. V. 27. P. 21-34.

33. Sorokin V.S., Sorokin S.V., Semenow A.N., Meltser B.Ya., Ivanov S.V.//J. Crystal Growth. 2000. V. 216. P. 97-103.

34. Semenov A.N., Solov'ev V.A., Meltser B.Ya., Lyublinskaya O.G., Prokopova L.A., Ivanov S.V.//J. Crystal Growth. 2005. V. 278. P. 203-208.

 

 
 

6. КЛАССИФИКАЦИЯ ПОЛУПРОВОДНИКОВЫХ СВЕРХРЕШЕТОК

С момента появления идеи создания искусственных сверхре­шеток, высказанной Л. В. Келдышем в 1962 г. [15] и возрожденной L. Еsaki и R. Тsu в 1970 г., полупроводниковые сверхрешетки пред­ставляют собой одну из наиболее развивающихся областей физики твердого тела. Как уже отмечалось, термин «сверхрешетка» используют для периодических структур, состоящих из тонких слоев полупроводников, повторяющихся в одном направлении с периодом, меньшим длины свободного пробега электронов. В ос­новном различают два типа искусственных сверхрешеток: компо­зиционные (КСР), состоящие из периодической последовательно­сти полупроводников разного химического состава, и легированные (ЛСР), представляющие собой последовательность слоев п- и p-типа одного материала с возможными беспримесными прослойками между ними (nipi-кристаллы). Использование этих двух подходов позволило создать большое число различных сверх­решеток. Существующее разнообразие полупроводниковых СР сделало необходимой их классификацию. В данном разделе мы рассмотрим классификацию полупроводниковых сверхрешеток, в основном следуя [13].

Потенциальный профиль в КСР создается за счет периоди­ческого изменения ширины энергетической запрещенной зоны в направлении роста кристалла; в ЛСР он обусловлен электро­статическим потенциалом ионизированных примесей.

Расположение краев энергетических зон различных материалов обычно сравнивают, используя в качестве единого начала отсчета уровень вакуума. При этом каждый из рассматриваемых материа­лов характеризуют величиной электронного сродства о, которое определяет энергию, требуемую для переноса электрона со дна зо­ны проводимости материала на уровень вакуума. Поэтому в мате­риале с большим значением электронного сродства край зоны про­водимости лежит ниже по энергии, чем в материале с меньшим электронным сродством.

Использование общего начала отсчета энергии позволяет раз­делить композиционные сверхрешетки на три типа (рис. 12).

В сверхрешетках типа I разрывы зоны проводимости и валентной зоны имеют противоположные знаки, а запре­щенные зоны полностью перекрываются. Такие сверхрешетки называют также контраваршнтным композиционными сверхре­шетками.

Рис. 12. Расположение зоны проводимости и валентной зоны от­носительно уровня вакуума (штриховая линия) в отдельных неконтактирующих материалах (слева) и КСР различных типов (справа): а - СР типа 1, б - СР типа II, в - политипная СР, по оси абсцисс отложена простран­ственная координата, по оси ординат -энергия [13].

 

Характерной чертой данных сверхрешеток является то, что уз­козонный слой, зажатый между широкозонными слоями, образует две прямоугольные квантовые ямы - одну для электронов, а дру­гую для дырок. Глубина этих потенциальных ям зависит от того, какая часть разности ширин запрещенной зоны DEg = Eg2 Eg1 приходится на разрыв DEC, а какая - на разрыв DEV. Например, наиболее используемые в настоящее время разрывы зон гетеро­переходов GaAs - AlxGa1-xAs составляют 0, 6DEg для DEС и 0, 4DEg - для DEV.

В сверхрешетках типа II изменения краев зоны проводимо­сти и валентной зоны имеют одинаковый знак, а запрещенные зоны перекрываются лишь частично либо не перекрываются вообще (ковариантная сверхрешетка).

Характерной чертой таких сверхрешеток является пространст­венное разделение носителей, локализованных в квантовых ямах. Электроны сосредоточены в квантовых ямах, образованных одним полупроводником, а дырки - в квантовых ямах, образованных дру­гим полупроводником. Отметим, что в этих многослойных систе­мах возникает «непрямая в реальном пространстве запрещенная зона». В качестве примера на рис. 13 показаны зонные диаграммы сверхрешеток такого типа на основе систем InAs-GaSb и In1-xGaxAs — GaSb1-yAsy.

Политипная сверхрешетка (см. рис. 12, в) представляет собой трехкомпонентную систему, в которой слои, образую­щие сверхрешетки типа II, дополняются широкозонным мате­риалом, создающим потенциальные барьеры как для электронов, так и для дырок, Пример энергетических диаграмм двух типов политипных сверхрешеток представлен на рис. 14. Такие решетки конструируются из базовых многокомпонентных систем типа ВАС, АВСА, АСВСА и т.д., где А означает АlSb, В - GаSb и С - InAs.

Термином «легированные СР» принято называть периодическую последовательность слоев п- и р-типа одного и того же полупровод­ника. Результирующее распределение заряда в этом случае создает совокупность параболических потенциальных ям (рис. 15). Потен­циал объемного заряда модулирует края зон исходного материала таким образом, что электроны и дырки оказываются пространст­венно разделенными. Причем соответствующим выбором парамет­ров структуры (уровней легирования и толщин слоев) это разделе­ние можно сделать практически полным. В свою очередь пространственное разнесение минимума зоны проводимости и максимума валентной зоны кардинально сказывается на парамет­рах системы. Например, из-за малого перекрытия электронных и дырочных состояний времена электронно-дырочной рекомбинации могут на много порядков превосходить свои значения в однород­ном полупроводнике.

Рис 13. Зависимость положения краев зон относительно уровня вакуума в твердых растворах In1-xGaxAs и GaSb1-yAs от их состава (а) и зонные диаграммы сверхрешеток InAs-GaSb (б) и In1-xGaxAs - GaSb1-yAsy, (в); заштрихованные области соответствуют энергиям подзон и участкам пространства, где концентрируются носители заряда; по оси абсцисс отложена пространственная координата [13].

Особенностью легированных сверхрешеток является возмож­ность использования для их создания любого полупроводника, допускающего легирование как донорами, так и акцепторами.

Другое преимущество легированных сверхрешеток связано с их структурным совершенством, так как в них отсутствуют гетерограницы, с которыми связаны возможности разупорядочения со­става или появления напряжений несоответствия. И, наконец, в ДСР путем подбора уровней легирования и толщин слоев эффек­тивной ширине запрещенной зоны можно придавать практически любое значение от нуля до ширины запрещенной зоны исходного материала.

Рис. 14.Энергия краев зон АlSb по отношению к GaSb и InAs (а) и энергетические диаграммы двух типов политипных сверхрешеток (б); заштрихованные области соот­ветствуют запрещенным зонам [13]

Рис. 15. Схема расположения слоев (а) и координатная зависи­мость зонной диаграммы (б) для легированных сверхрешеток GаАs; стрелка на левом рисунке- показывает направление роста слоев [13]

 

Возможности легирования отдельных- слоев используются и изменения свойств композиционных сверхрешеток. При этом обычно осуществляют легирование донорной примесью широко-зонного материала (материала барьеров). Поскольку край зоны Проводимости узкозонного материала (дно КЯ) в этом случае ока­зывается ниже по энергии, чем донорные уровни в барьерах, элек­троны с донорных состояний могут переходить в нелегированные слои, пространственно разделяясь с породившими их ионизированными донорами. Такой пространственный переход подвижных носителей в сверхрешетках с модулированным легиро­ванием создает в КСР области объемного заряда чередующегося знака, что вызывает периодические изгибы краев зон (рис. 16)и трансформацию прямоугольных квантовых ям в КЯ параболическо­го типа. Кроме того, подвижные носители заряда, перешедшие в квантовую яму, могут двигаться в них параллельно гетерогранице, испытывая слабое рассеивание на ионизованных примесях из-за п ространственного разделения рассеивающих центров и канала, в котором движутся подвижные носители заряда.

Рис. 16. Схема расположения слоев (а) и координатная зависи­мость зонной диаграммы для сверхрешеток i—GaAs -n+, AlxGa1-xAs с модулированным легированием (б); изгибы зон вблизи гетерограниц создаются пространственными зарядами, возникающими при переходе электронов с ионизованных доноров в барьерах n+ -AlxGa1-xAsв потенциальную яму i - GaAs [13]

В сверхрешетке с модулированным легированием можно дос­тичь еще большего увеличения подвижности электронов, если вве­сти тонкие нелегированные широкозонные прослойки толщиной 5...10 нм, т.е. еще больше разнести рассеивающие центры и под­вижные носители. Этот эффект будет наиболее выражен при низких температурах, когда ослаблены процессы фононного рассеяния.

На рис. 17, показан еще один тип легированных КСР, об­ладающих перестраиваемыми электронными свойствами (как ЛСР) и одновременно существенно увеличенными подвижностями элек­тронов и дырок в квантовых ямах (как сверхрешетки с модулиро­ванным легированием).

 

Рис.17. Расположение слоев (слева) и координатная зависи­мость зонной диаграммы (справа) для легированной сверхрешетки GaAs—AlxGa1-xAs период СР состоит из десяти отдельных слоев; стрелка на левом рисунке показывает направление роста [13].

 

Основная идея создания такой легированной сверхрешетки состоит в периодическом включении специально нелегированных i-слоев. При этом сверхтонкие нелегированные слои i-GaAs оказы­ваются зажатыми между чередующимися легированными п- и р-слоями AlxGa1-xAs. Эффект пространственного разделения пе­решедших в слои GaAs свободных носителей заряда и породивших

Рис. 18. Общая классификация полупроводниковых сверхрешеток.

 

их ионизованных примесей усиливается засчет введения тонких нелегированных прослоек i—AlxGa1-xAs на гетерограницах. При этом оказывается, что периодический ход потенциала обычной ле­гированной сверхрешетки периодически прерывается потенциаль­ными ямами, образованными материалом с меньшей шириной за­прещенной зоны.

На рис. 18 дана общая классификация сверхрешеток по струк­турным признакам, относительному расположению краев зон на ге­терограницах, материалам слоев, образующих сверхрешетку, и степени рассогласования постоянных решетки на гетерограницах [13].

 

сей кислорода также осложняет их протекание. В методах СVD температурный интервал осаждения составляет обычно 900—1100°С формирование наноструктур затруднительно. Специальные методы образования двухфазных композиций и применение плазмы для активирования химических реакций могут способствовать получению наноматериалов, как, например, в случае высокотвердых покрытий типа Si3N4-TiN [40].

Применительно к некоторым металлам и сплавам (Ni Ni —Р, Ni—Мо, Ni—W и др.) для получения наноматериалов оказался весьма эффективным метод импульсного электроосаждения, когда реализуется высокая скорость зарождения кристаллитов и за счет адсорбционно-десорбционных ингибирующих процессов обеспечивается их низкая скорость роста. Канадская фирма «Ontario Hydro Technologies» освоила промышленный выпуск слоев толщиной 1 — 100 мкм и небольших по толщине (100 мкм—2 мкм) изделий, получаемых импульсным электроосаждением для различных приложений. В табл. 3.11 приводились сведения о физико-механических свойствах никелевых наноструктурных лент полученных импульсным электроосаждением.

Получает распространение метод газотермического напыления наноструктурных покрытий [34]. В качестве сырья используют различные оксидные (Аl2О3—ТiО2, Аl2О3—ZrО2, Сr2О3—TiO) ZrО2—Y2О3 и др.) и карбидные (WС—Со, Сr3С2—Ni и др.) композиционные нанопорошки. Схема установки для газотермического напыления твердосплавных порошков с использованием кислородуглеводородных газовых смесей показана на рис. 4.13. Перед напылением исходные порошки обрабатывают в высокоэнергетических измельчающих агрегатах, а затем для улучшения сыпучести подвергают агломерации (смешиванию с пластификатором и обкатке). В результате получают округлые частиц размером


Рис. 4.13. Схема установки газотермического напыления: 1 — ввод газовых смесей; 2 — смеситель; 3 ~ система охлаждения; 4 — плазмен­ный ствол; 5— покрытие; 6— подложка; 7— ввод порошка

 

10 — 50 мкм. Последняя операция обеспечивает достаточную ско­рость поступления агломерированных сфероидов в плазменную струю. Хотя температура последней достаточно высокая (пример­но 3000 К и выше), но высокие скорости газового потока (около 2000 м/с) приводят к кратковременному пребыванию наноструктурных частиц в высокотемпературном интервале. Размер нанокристаллитов обычно увеличивается от 30—40 нм до 200 нм, но показатели твердости и износостойкости таких покрытий превос­ходят таковые для обычных покрытий в 1, 3 — 2 раза.

Ионно-плазменная обработка поверхности, включая имплан­тацию, используется применительно к самым различным матери­алам (металлам, сплавам, полупроводникам, полимерам и др.) для создания поверхностных сегрегации и нанорельефа, что по­лезно для многих практических приложений (см. подразд. 4.3, 5.5).

Технология полупроводников

Для этого класса материалов характерно как получение нано­частиц (типа CdS, CdSe, InP и др.), так и гетероструктур (сверх­решеток) на основе соединений АIIIВV (типа AlGaAs—GaAs, InAs-— GaAs и др.), а также пористого кремния. Полупроводниковые на­ночастицы синтезируются коллоидными методами, гидролизной обработкой, газофазными методами (включая лазерное испаре­ние) и др. Например, наночастицы сульфида кадмия осаждаются из растворов сульфида натрия и хлората кадмия:

Cd(ClO4)2 + Na2S = CdS¯ + 2NaClO4.

При этом рост частиц CdS регулируется за счет контролируе­мого прерывания реакции. Нанооксид титана образуется при гид­ролизе тетрахлорида титана:

TiCl4 + H2O = TiO2¯ + 4HCl.

Получение наночастиц высокой чистоты с гарантированными размерами и узким распределением по размерам (т.е. практически монодисперсных) требует строгого соблюдения условий реакции и предотвращения поверхностных загрязнений. Так, наночастицы селенида кадмия среднего размера (4, 5 ± 0, 3) нм синтезируются рас­творением диметилкадмия (Сd(СН3)2) и порошков селена в трибу-тилфосфине; образующийся раствор инжектируется в нагретый до температуры 340 —360°С оксид триоктилфосфина [32]. Это поверх­ностно-активное вещество (сурфактант), с одной стороны, пре­пятствует агломерации наночастиц, а с другой стороны — пассивирует их поверхность, защищая от окисления и т.д. Кристаллизация CdSe начинается при температуре 280—300°С. Различные добавки в растворитель могут приводить к кристаллизации не только округлых наночастиц, но и стержневидных нанокристаллов. Длительность нагрева составляет от нескольких минут до нескольких часов. Наночастицы осаждаются при добавлении метанола в охлажденную до комнатной температуры реакционную смесь, которая затем подвергается центрифугированию и сушке в азоте. За один опыт в-лабораторных условиях удается получить порцию наночастиц массой от сотни миллиграммов до нескольких граммов.

На рис. 4.14 показана типичная схема установки для выращивания гетероструктур (сверхрешеток) на основе соединений АIIIBVметодом молекулярно-лучевой (или пучковой) эпитаксии. Испаряемые из эффузионных ячеек соединения и легирующие примеси программированно конденсируются на специально подготовленной и обогреваемой подложке. Вакуумный шлюз позволяет менять, подложки, сохраняя сверхвысокий вакуум. Вращением подложки обеспечивается однородность состава и структуры напыляемых слоев, индивидуальная толщина которых может составляет от нескольких нанометров до долей микрона.

В данном случае осуществляется ориентированная кристаллизация, т.е. процесс роста, при котором кристаллическая решетка напыляемой пленки закономерно ориентирована относительно кристалла — подложки. Такие пленки называют эпитаксиальными. Различают гомоэпитаксию (материалы пленок и подложки)

Рис. 4.14. Схема установки для молекулярно-лучевой эпитаксии (вид сверху) 1 — экран; 2, 3 — соответственно заслонки и фланцы эффузионных ячеек; экраны; 5 - дифрактометр; 6 -заслонка; 7 — подложка на вращающемся держателе; 8 — ионизационный индикатор; 9— шлюзовой клапан; 10— вакуумный шлюз для смены образцов; 11 — смотровое окно; 12 — двигатель для вращения подложки

 

 

 
 

Рис. 4.15. Морфологические изменения при росте пленок по механизму Фольмера-Вебера (схема последовательных стадий а-в перехода от островковой к сплошной структуре): 1 — подложка; 2 — пленка. Рис. 4.16. Схема, иллюстрирующая рост пленки по механизму Франка—Ван дер Мерве: а, б — межплоскостные расстояния для сопрягающихся плоскостей пленки и подложки равны, толщина пленки мень­ше критической; в — межплоскостные расстояния не равны, толщина пленки больше критической; показано образо­вание дислокаций несоответствия; 1 — подложка; 2 — пленка

 

идентичны) и гетероэпитаксию, когда сочетаются разнородные вещества.

Рост пленок при конденсации из паровой фазы включает не­сколько элементарных процессов: адсорбцию, поверхностную диффузию, флуктуационное образование зародышей и их рост. Как отмечалось, в подразд. 2.2, различают три механизма роста [14]. Механизм по Фольмеру—Веберу предполагает зарождение изо­лированные трехмерных островков, их рост и коалесценцию с об­разованием* сплошной пленки (рис. 4.15). По механизму Франка— Ван дер Мерве рост пленки начинается с образования, двухмер­ных зародышей и происходит за счет последовательного наращивания моноатомных слоев (рис. 4.16). Наконец, согласно механизму Крастанова-Странского предполагается на начальной стадии] двухмерное образование зародыша, а затем возникновение трехмерных островков (рис. 4.17).


Рис. 4.17. Схема структурно-морфологических превращений пленок при механизме роста по Крастанову — Странскому: а, б— образование слоев; в — образование островков; г — поликристаллическая пленка (1 — подложка; 2 — монослойное покрытие; 3 — островки)

 

Реализация этих механизмов зависит от многих факторов сопряжения периодов кристаллических решеток пленки и под-} ложки, уровня диффузионных процессов и взаимной растворимости в этой паре, условий эксперимента и т.д. Для гетероэпитаксиальных систем, согласованных по периодам решетки, оценитьв первом приближении предпочтительность того или иного меха­низма можно из термодинамических соображений. Слоевое зарождение пленки (т.е. осуществление второго механизма) происхо­дит, если выполняется соотношение

s1 > s2 + s12, (4.5)

где s1 — поверхностная энергия подложки; s2 — поверхностная энергия пленки; s12 — межфазная энергия границы раздела. Если имеет место обратное соотношение

s1 < s2 + s12, (4.6)

то предпочтительнее трехмерное (островковое) зародышеобразование (т.е. реализуется первый механизм).

Третий механизм роста может иметь место в системах, где выполняется соотношение (4.5), но имеется рассогласование по периодам решетки и возникает энергия упругой деформации, зависящая от толщины пленки. Таким образом, .в начале про­цесса реализуется слоевое зарождение пленки, но для компен­сации возрастающей упругой энергии в дальнейшем островковый рост оказывается более предпочтительным. В островках происходит релаксация упругих напряжений и снижение уровня упругой энергии.

Представления о механизмах кристаллизации пленок оказались важными при разработке гетероструктур с квантовыми точками. Последние (см. подразд. 3.2) представляют собой нульмерные квантово-размерные образования, в пределах которых движение носителей заряда ограничено в трех направлениях. На рис. 2.2 де­монстрировались квантовые точки InGaAs на поверхности эпитаксиальных слоев арсенида галлия. Процесс формирования таких структур основан на кристаллизации по механизму Краста­нова—Странского, когда в процессе роста пленки на подложке сначала происходит рост слоев, но по достижении критической толщины такая ситуация оказывается энергетически невыгодной и минимуму свободной энергии системы будет отвечать формирование на поверхности роста трехмерных островков — кванто­вых точек.

Кроме молекулярно-лучевой эпитаксии для формирования ге­тероструктур с квантовыми точками может быть использован ме­тод СVD, а также ионная имплантация. Последняя продемонст­рирована на примере систем на основе Si-Ge и других полупро­водников [12]. В основе формирования таких структур лежит само­организация радиационных дефектов, образующихся при ионной имплантации. Так, внедрение ионов Ge+ в кремниевую подложку приводит к образованию шероховатостей, а последующий отжиг сопровождается образованием упорядоченных германиевых клас­теров, что фиксировалось с помощью атомно-силового микро­скопа и сканирующего электронного микроскопа и др.

П. Наноматериалы.

1. Нанокомпозицонные материалы со специаль­ными механическими свойствами для сверхпрочных, сверхэластичных, сверхлегких конструкций,

2. Нанокомпозиционные материалы с особой ус­тойчивостью к экстремальным факторам для тер­мически, химически и радиационно стойких конст­рукций.

3. Специальные нанокопозиционные материалы с низкой эффективной отражающей способностью в СВЧ и оптическом диапазонах длин волн.

4. Нанокомпозиционные и нанодисперсные мате­риалы для высокоэффективной сепарации и изби­рательного катализа.

5. Нанодисперсные материалы с максимально эффективным энерговыделением, в том числе, им­пульсным.

III. Нанотехнология.

1. Машиностроительные нанотехнологии (меха­ническая и корпускулярная обработка с наноточ-ностью).

2. Физико-химические нанотехнологии (атомно-молекулярная химическая сборка неорганических и органических веществ).

3. Атомно-зондовые нанотехнологии (нанозондовый сверхлокальный синтез и модифицирование).


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-08; Просмотров: 661; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.092 с.)
Главная | Случайная страница | Обратная связь