Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Реальный объект и расчетная схема
В сопротивлении материалов, как и во всякой отрасли естествознания, исследование вопроса о прочности или жесткости реального объекта начинается с выбора расчетной схемы. Расчетная схема конструкции - его упрощенная схема, освобожденная от несущественных в данной задаче особенностей. Выбор расчетной схемы начинается со схематизации свойств материалов сооружения. В сопротивлении материалов принято рассматривать все материалы как однородную сплошную среду, независимо от их микроструктуры. Под однородностью материала понимают независимость его свойств от величины выделенного из тела объема. И хотя в действительности реальный материал, как правило, неоднороден (уже в силу его молекулярного строения), тем не менее указанная особенность не является существенной, поскольку в сопротивлении материалов рассматриваются конструкции, размеры которых существенно превышают не только межатомные расстояния, но и размеры кристаллических зерен. С понятием однородности тесно связано понятие сплошности среды, под которым подразумевают тот факт, что материал конструкции полностью заполняет весь отведенный ему объем, а значит в теле конструкции нет пустот. Под действием внешних сил реальное тело меняет свои геометрические размеры. После снятия нагрузки геометрические размеры тела полностью или частично восстанавливаются. Свойство тела восстанавливать свои первоначальные размеры после разгрузки называется упругостью. При решении большинства задач в сопротивлении материалов принимается, что материал конструкций абсолютно упругий. Обычно сплошная среда принимается изотропной, т.е. предполагается, что свойства тела, выделенного из нее, не зависят от его ориентации в пределах этой среды. Отдельно взятый кристалл материала анизотропен, но т.к. в объеме реального тела содержится бесконечно большое количество хаотично расположенных кристаллов, принимается, что материал изотропен. При выборе расчетной схемы вводятся упрощения и в геометрию реального объекта. Основным упрощающим приемом в сопротивлении материалов является приведение геометрической формы тела к схемам бруса (стержня) или оболочки. Как известно, любое тело в пространстве характеризуется тремя измерениями. Брусом называется геометрический объект, одно из измерений которого (длина) много больше двух других. Геометрически брус может быть образован путем перемещения плоской фигуры вдоль некоторой кривой, как это показано на рис. 1.1. Рис. 1.1 Эта кривая называется осью бруса, а плоская замкнутая фигура, располагающая свой центр тяжести на оси бруса и нормальная к ней, называется его поперечным сечением. Брус может иметь как постоянное, так и переменное поперечное сечение. Многие сложные конструкции на практике рассматриваются как комбинации элементов, имеющих форму бруса, поэтому в настоящей книге преимущественно рассматриваются методы расчета бруса как основного геометрического объекта изучения науки сопротивления материалов. Второй основной геометрической формой, рассматриваемой в сопротивлении материалов, является оболочка, под которой подразумевается тело, у которого одно из измерений (толщина) намного меньше, чем два других. Для соединения отдельных частей конструкции между собой и передачи внешней нагрузки на основание на нее накладываются связи, ограничивающие перемещения тех точек сооружения, к которым они приложены. Связи могут ограничивать либо повороты точек сооружения, либо их линейные смещения, либо и то и другое.
Внешние и внутренние силы. Метод сечений Силы являются мерилом механического взаимодействия тел. Если конструкция рассматривается изолированно от окружающих тел, то действие последних на нее заменяется силами, которые называются внешними. Внешние силы, действующие на тело, можно разделить на активные (независимые) и реактивные. Реактивные усилия возникают в связях, наложенных на тело, и определяются действующими на тело активными усилиями. По способу приложения внешние силы делятся на объемные и поверхностные. Объемные силы распределены по всему объему рассматриваемого тела и приложены к каждой его частице. В частности, к объемным силам относятся собственный вес сооружения, магнитное притяжение или силы инерции. Единицей измерения объемных сил является сила, отнесенная к единице объема - кН/м3. Поверхностные силы приложены к участкам поверхности и являются результатом непосредственного контактного взаимодействия рассматриваемого объекта с окружающими телами. В зависимости от соотношения площади приложения нагрузки и общей площади поверхности рассматриваемого тела, поверхностные нагрузки подразделяются на сосредоточенные и распределенные. К первым относятся нагрузки, реальная площадь приложения которых несоизмеримо меньше полной площади поверхности тела (например, воздействие колонн на фундаментную плиту достаточно больших размеров можно рассматривать как действие на нее сосредоточенных усилий). Если же площадь приложения нагрузки сопоставима с площадью поверхности тела, то такая нагрузка рассматривается как распределенная. Сосредоточенные усилия измеряются в кН, а распределенные - кН/м2. Взаимодействие между частями рассматриваемого тела характеризуется внутренними силами, которые возникают внутри тела под действием внешних нагрузок и определяются силами межмолекулярного воздействия. Величины внутренних усилий определяются с применением метода сечений, суть которого заключается в следующем. Если при действии внешних сил тело находится в состоянии равновесия, то любая отсеченная часть тела вместе с приходящимися на нее внешними и внутренними усилиями также находится в равновесии, следовательно, к ней применимы уравнения равновесия. Рассмотрим тело, имеющее форму бруса (рис. 1.2, а). Рис. 1.2
Пусть к нему приложена некоторая система внешних сил Р1, Р2, Р3,..., Рn, удовлетворяющая условиям равновесия, т.е. при действии указанных внешних сил тело находится в состоянии равновесия. Если рассечь брус сечением А на две части и правую отбросить, то, т.к. связи между частями тела устранены, необходимо действие правой (отброшенной) части на левую заменить некоей системой внутренних сил (PА ), действующей в сечении А (рис. 1.2, б). Обозначая через Pлев и Рправ суммы внешних сил, приложенных соответственно, к левой и правой частям бруса (относительно сечения А), и учитывая, что Pлев + Рправ = 0 (1.1) для отсеченных частей бруса получим следующие очевидные соотношения: Рлев + PA = 0; Рправ - PA = 0. (1.2) Последние соотношения показывают, что равнодействующая внутренних сил РА в сечении А может определяться с равным успехом из условий равновесия либо левой, либо правой частей рассеченного тела. В этом суть метода сечений. Внутренние усилия должны быть так распределены по сечению, чтобы деформированные поверхности сечения А при совмещении правой и левой частей тела в точности совпадали. Это требование в механике твердого деформируемого тела носит название условия неразрывности деформаций. Воспользуемся правилами статики и приведем систему внутренних сил РА к центру тяжести сечения А в соответствии с правилами теоретической механики. В результате получим главный вектор сил и главный вектор момента (рис. 1.3). Далее выбираем декартову систему координат xyz с началом координат, совпадающим с центром тяжести сечения А. Ось z направим по нормали к сечению, а оси x и y расположим в плоскости сечения. Спроектировав главный вектор сил и главный момент на координатные оси x, y, z, получаем шесть составляющих: три силы Nz , Qx , Qy и три момента Mz , Mx , My , называемых внутренними силовыми факторами в сечении бруса. Составляющая Nz называется нормальной, или продольной силой в сечении. Силы Qx и Qy называются поперечными усилиями. Момент Mz называется крутящим моментом, а моменты Mx и My -изгибающими моментами относительно осей x и y, соответственно. При известных внешних силах все шесть внутренних силовых факторов в сечении определяются из шести уравнений равновесия, которые могут быть составлены для отсеченной части. Пусть R*, M* - результирующая сила и результирующий момент действующие на отсеченной части тела. Если тело при действии полной системы внешних сил находится в равновесном состоянии, то условия равновесия отсеченной части тела имеет вид: (1.3) Последние два векторные уравнения равновесия дают шесть скалярных уравнений в проекциях на декартовых осях координат: (1.4) которые в общем случае составляют замкнутую систему алгебраических уравнений относительно шести неизвестных внутренних усилий: Qx, Qy, Nz, Mx, My, Mz. Следовательно, если полная система внешних сил известна, то по методу сечений, всегда можно определить все внутренние усилия действующих в произвольно взятом сечении тела. Данное положение является основополагающим обстоятельством в механике твердого деформируемого тела. В общем случае в сечении могут иметь место все шесть силовых факторов. Однако достаточно часто на практике встречаются случаи, когда некоторые внутренние усилия отсутствуют - такие виды нагружения бруса получили специальные названия (табл. 1).
Рис. 1.3
Сопротивления, при которых в поперечном сечении бруса действует одно внутреннее усилие, условно называются простыми. При одновременном действии в сечении бруса двух и более усилий сопротивление бруса называется сложным. В заключение заметим, что при выполнении практических расчетов, для наглядности, как правило, определяются графики функций внутренних силовых факторов относительно координатной оси, направленной вдоль продольной оси стержня. Графики изменения внутренних усилий вдоль продольной оси стержня называются эпюрами. Таблица 1 Популярное:
|
Последнее изменение этой страницы: 2017-03-08; Просмотров: 768; Нарушение авторского права страницы