Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Задачи и методы сопротивления материаловСтр 1 из 5Следующая ⇒
ВВЕДЕНИЕ Задачи и методы сопротивления материалов Сопротивление материалов - наука о прочности, жесткости и устойчивости элементов инженерных конструкций. Методами сопротивления материалов выполняются расчеты, на основании которых определяются необходимые размеры деталей машин и конструкций инженерных сооружений. В отличие от теоретической механики сопротивление материалов рассматривает задачи, в которых наиболее существенными являются свойства твердых деформируемых тел, а законами движения тела как жесткого целого здесь пренебрегают. В то же время, вследствие общности основных положений, сопротивление материалов рассматривается как раздел механики твердых деформируемых тел. В состав механики деформируемых тел входят также такие дисциплины, как: теория упругости, теория пластичности, теория ползучести, теория разрушения и др., рассматривающие, по существу, те же вопросы, что и сопротивление материалов. Различие между сопротивлением материалов и другими теориями механики твердого деформируемого тела заключается в подходах к решению задач. Строгие теории механики деформируемого тела базируются на более точной постановке проблем, в связи с чем, для решения задач приходится применять более сложный математический аппарат и проводить громоздкие вычислительные операции. Вследствие этого возможности применения таких методов в практических задачах ограничены. В свою очередь, методы сопротивления материалов базируются на упрощенных гипотезах, которые, с одной стороны, позволяют решать широкий круг инженерных задач, а с другой, получать приемлемые по точности результаты расчетов. При этом главной задачей курса является формирование знаний для применения математического аппарата при решении прикладных задач, осмысления полученных численных результатов и поиска выбора наиболее оптимальных конструктивных решений. То есть данный предмет является базовым для формирования инженерного мышления и подготовки кадров высшей квалификации по техническим специализациям.
Внешние и внутренние силы. Метод сечений Силы являются мерилом механического взаимодействия тел. Если конструкция рассматривается изолированно от окружающих тел, то действие последних на нее заменяется силами, которые называются внешними. Внешние силы, действующие на тело, можно разделить на активные (независимые) и реактивные. Реактивные усилия возникают в связях, наложенных на тело, и определяются действующими на тело активными усилиями. По способу приложения внешние силы делятся на объемные и поверхностные. Объемные силы распределены по всему объему рассматриваемого тела и приложены к каждой его частице. В частности, к объемным силам относятся собственный вес сооружения, магнитное притяжение или силы инерции. Единицей измерения объемных сил является сила, отнесенная к единице объема - кН/м3. Поверхностные силы приложены к участкам поверхности и являются результатом непосредственного контактного взаимодействия рассматриваемого объекта с окружающими телами. В зависимости от соотношения площади приложения нагрузки и общей площади поверхности рассматриваемого тела, поверхностные нагрузки подразделяются на сосредоточенные и распределенные. К первым относятся нагрузки, реальная площадь приложения которых несоизмеримо меньше полной площади поверхности тела (например, воздействие колонн на фундаментную плиту достаточно больших размеров можно рассматривать как действие на нее сосредоточенных усилий). Если же площадь приложения нагрузки сопоставима с площадью поверхности тела, то такая нагрузка рассматривается как распределенная. Сосредоточенные усилия измеряются в кН, а распределенные - кН/м2. Взаимодействие между частями рассматриваемого тела характеризуется внутренними силами, которые возникают внутри тела под действием внешних нагрузок и определяются силами межмолекулярного воздействия. Величины внутренних усилий определяются с применением метода сечений, суть которого заключается в следующем. Если при действии внешних сил тело находится в состоянии равновесия, то любая отсеченная часть тела вместе с приходящимися на нее внешними и внутренними усилиями также находится в равновесии, следовательно, к ней применимы уравнения равновесия. Рассмотрим тело, имеющее форму бруса (рис. 1.2, а). Рис. 1.2
Пусть к нему приложена некоторая система внешних сил Р1, Р2, Р3,..., Рn, удовлетворяющая условиям равновесия, т.е. при действии указанных внешних сил тело находится в состоянии равновесия. Если рассечь брус сечением А на две части и правую отбросить, то, т.к. связи между частями тела устранены, необходимо действие правой (отброшенной) части на левую заменить некоей системой внутренних сил (PА ), действующей в сечении А (рис. 1.2, б). Обозначая через Pлев и Рправ суммы внешних сил, приложенных соответственно, к левой и правой частям бруса (относительно сечения А), и учитывая, что Pлев + Рправ = 0 (1.1) для отсеченных частей бруса получим следующие очевидные соотношения: Рлев + PA = 0; Рправ - PA = 0. (1.2) Последние соотношения показывают, что равнодействующая внутренних сил РА в сечении А может определяться с равным успехом из условий равновесия либо левой, либо правой частей рассеченного тела. В этом суть метода сечений. Внутренние усилия должны быть так распределены по сечению, чтобы деформированные поверхности сечения А при совмещении правой и левой частей тела в точности совпадали. Это требование в механике твердого деформируемого тела носит название условия неразрывности деформаций. Воспользуемся правилами статики и приведем систему внутренних сил РА к центру тяжести сечения А в соответствии с правилами теоретической механики. В результате получим главный вектор сил и главный вектор момента (рис. 1.3). Далее выбираем декартову систему координат xyz с началом координат, совпадающим с центром тяжести сечения А. Ось z направим по нормали к сечению, а оси x и y расположим в плоскости сечения. Спроектировав главный вектор сил и главный момент на координатные оси x, y, z, получаем шесть составляющих: три силы Nz , Qx , Qy и три момента Mz , Mx , My , называемых внутренними силовыми факторами в сечении бруса. Составляющая Nz называется нормальной, или продольной силой в сечении. Силы Qx и Qy называются поперечными усилиями. Момент Mz называется крутящим моментом, а моменты Mx и My -изгибающими моментами относительно осей x и y, соответственно. При известных внешних силах все шесть внутренних силовых факторов в сечении определяются из шести уравнений равновесия, которые могут быть составлены для отсеченной части. Пусть R*, M* - результирующая сила и результирующий момент действующие на отсеченной части тела. Если тело при действии полной системы внешних сил находится в равновесном состоянии, то условия равновесия отсеченной части тела имеет вид: (1.3) Последние два векторные уравнения равновесия дают шесть скалярных уравнений в проекциях на декартовых осях координат: (1.4) которые в общем случае составляют замкнутую систему алгебраических уравнений относительно шести неизвестных внутренних усилий: Qx, Qy, Nz, Mx, My, Mz. Следовательно, если полная система внешних сил известна, то по методу сечений, всегда можно определить все внутренние усилия действующих в произвольно взятом сечении тела. Данное положение является основополагающим обстоятельством в механике твердого деформируемого тела. В общем случае в сечении могут иметь место все шесть силовых факторов. Однако достаточно часто на практике встречаются случаи, когда некоторые внутренние усилия отсутствуют - такие виды нагружения бруса получили специальные названия (табл. 1).
Рис. 1.3
Сопротивления, при которых в поперечном сечении бруса действует одно внутреннее усилие, условно называются простыми. При одновременном действии в сечении бруса двух и более усилий сопротивление бруса называется сложным. В заключение заметим, что при выполнении практических расчетов, для наглядности, как правило, определяются графики функций внутренних силовых факторов относительно координатной оси, направленной вдоль продольной оси стержня. Графики изменения внутренних усилий вдоль продольной оси стержня называются эпюрами. Таблица 1 Напряжения В окрестности произвольной точки К, принадлежащей сечению А некоторого нагруженного тела, выделим элементарную площадку DF, в пределах которой действует внутреннее усилие D (рис. 1.4, а). Векторная величина (1.5) называется полным напряжением в точке К. Проекция вектора полного напряжения на нормаль к данной площадке обозначается через s и называется нормальным напряжением.
Рис. 1.4 Проекции вектора на перпендикулярные оси в плоскости площадки (рис. 1.4, б) называются касательными напряжениями по направлению соответствующих осей и обозначаются t´ и t´ ´. Если через ту же самую точку К провести другую площадку, то, в общем случае будем иметь другое полное напряжение. Совокупность напряжений для множества площадок, проходящих через данную точку, образует напряженное состояние в этой точке. Перемещения и деформации Под действием внешних сил твердые тела изменяют свою геометрическую форму, а точки тела неодинаково перемещаются в пространстве. Вектор , имеющий свое начало в точке А недеформированного состояния, а конец в т. деформированного состояния, называется вектором полного перемещения т. А (рис. 1.5, а). Его проекции на оси xyz называются осевыми перемещениями и обозначаются u, v и w, соответственно. Для того, чтобы охарактеризовать интенсивность изменения формы и размеров тела, рассмотрим точки А и В его недеформированного состояния, расположенные на расстоянии S друг от друга (рис. 1.5, б).
Рис. 1.5 Пусть в результате изменения формы тела эти точки переместились в положение А¢ и В¢, соответственно, а расстояние между ними увеличилось на величину DS и составило S + DS. Величина (1.6) называется линейной деформацией в точке А по направлению АВ. Если рассматривать деформации по направлениям координатных осей xyz, то в обозначения соответствующих проекций линейной деформации вводятся индексы ex, ey, ez . Линейные деформации ex, ey, ez характеризуют изменения объема тела в процессе деформирования, а формоизменения тела - угловыми деформациями. Для их определения рассмотрим прямой угол, образованный в недеформированном состоянии двумя отрезками ОD и ОС (рис. 1.5, б). При действии внешних сил указанный угол DOC изменится и примет новое значение D¢ O¢ C¢. Величина (Ð DOC - Ð D¢ O¢ C¢ ) = g (1.7) называется угловой деформацией, или сдвигом в точке О в плоскости СОD. Относительно координатных осей деформации сдвига обозначаются gxy, gxz, gyz. Совокупность линейных и угловых деформаций по различным направлениям и плоскостям в данной точке образует деформированное состояние в точке. 1.6. Закон Гука и принцип независимости Многочисленные экспериментальные наблюдения за поведением деформируемых тел показывают, что в определенных диапазонах перемещения точек тела пропорциональны действующим на него нагрузкам. Впервые указанная закономерность была высказана в 1776 году английским ученым Гуком и носит название закона Гука. В соответствии с этим законом перемещение произвольно взятой точки А (рис. 1.5, а) нагруженного тела по некоторому направлению, например, по оси x, а может быть выражено следующим образом: u = dx P, (1.8) где Р - сила, под действием которой происходит перемещение u; dx× - коэффициент пропорциональности между силой и перемещением. Очевидно, что коэффициент dx зависит от физико-механических свойств материала, взаимного расположения точки А и точки приложения и направления силы Р, а также от геометрических особенностей системы. Таким образом, последнее выражение следует рассматривать как закон Гука для данной системы. В современной трактовке закон Гука определяет линейную зависимость между напряжениями и деформациями, а не между силой и перемещением. Коэффициенты пропорциональности в этом случае представляют собой физико-механические характеристики материала и уже не связаны с геометрическими особенностями си- стемы в целом. Системы, для которых соблюдается условие пропорциональности между перемещениями и внешними силами, подчиняются принципу суперпозиции, или принципу независимости действия сил. В соответствии с этим принципом перемещения и внутренние силы, возникающие в упругом теле, считаются независящими от порядка приложения внешних сил. То есть, если к системе приложено несколько сил, то можно определить внутренние силы, напряжения, перемещения и деформации от каждой силы в отдельности, а затем результат действия всех сил получить как сумму действий каждой силы в отдельности. Принцип независимости действия сил является одним из основных способов при решении большинства задач механики линейных систем. РАСТЯЖЕНИЕ И СЖАТИЕ Перемещения при изгибе. Изгиб балки сопровождается искривлением ее оси. При поперечном изгибе ось балки принимает вид кривой, расположенной в плоскости действия поперечных нагрузок. При этом точки оси получают поперечные перемещения, а поперечные сечения совершают повороты относительно своих нейтральных осей. Углы поворота поперечных сечений принимаются равными углам наклона j, касательной к изогнутой оси балки (рис. 5.23).
Прогибы и углы поворотов в балках являются функциями координаты z и их определение необходимо для расчета жесткости. Рассмотрим изгиб стержня в одной из главных плоскостей например, в плоскости yz. Как показывает практика, в составе реальных сооружений стержни испытывают весьма малые искривления (ymax/l = 10-2 - 10-3, где ymax - максимальный прогиб; l - пролет балки). В этом случае неизвестными функциями, определяющими положение точек поперечных сечений балки являются y(z) и j (z) = = a (z) (рис.5.23). Совокупность значений этих параметров по длине балки образуют две функции от координаты z - функцию перемещений y (z) и функцию углов поворота j (z). Из геометрических построений (рис. 5.23) наглядно видно, что угол наклона касательной к оси z и угол поворота поворота поперечных сечений при произвольном z равны между собой. В силу малости углов поворота можно записать: . (5.17) Из курса математического анализа известно, что кривизна плоской кривой y (z) выражается следующей формулой: . Если рассмотреть совместно соотношение (5.9) и последнее выражение, то получим нелинейное дифференциальное уравнение изогнутой оси балки, точное решение которого, как правило, затруднительно. В связи с малостью величины по сравнению с единицей последнее выражение можно существенно упростить, и тогда . (5.18) Учитывая (5.9), из (5.18) получим следующее важное дифференциальное соотношение , (5.19) где Ix - момент инерции поперечного сечния балки, относительно ее нейтральной оси; Е - модуль упругости материала; E Ix - изгибная жесткость балки. Уравнение (5.19), строго говоря, справедливо для случая чистого изгиба балки, т.е. когда изгибающий момент Mx (z) имеет постоянное значение, а поперечная сила равна нулю. Однако это уравнение используется и в случае поперечного изгиба, что равносильно пренебрежению искривлений поперечных сечений за счет сдвигов, на основании гипотезы плоских сечений. Введем еще одно упрощение, связанное с углом поворота поперечного сечения. Если изогнутая ось балки является достаточно пологой кривой, то углы поворота сечений с высокой степенью точности можно принимать равными первой производной от прогибов. Отсюда следует, что прогиб балки принимает экстремальные значения в тех сечениях, где поворот равен нулю. В общем случае, для того, чтобы найти функции прогибов y (z) и углов поворота j (z), необходимо решить уравнение (5.19), с учетом граничных условий между смежными участками. Для балки, имеющей несколько участков, определение формы упругой линии является достаточно сложной задачей. Уравнение (5.19), записанное для каждого участка, после интегрирования, содержит две произвольные постоянные. На границах соседних участков прогибы и углы поворота являются непрерывными функциями. Данное обстоятельство позволяет определить необходимое число граничных условий для вычисления произвольных постоянных интегрирования. Если балка имеет n - конечное число участков, из 2n числа граничных условий получим 2n алгебраических уравнений относительно 2n постоянных интегрирования. Если момент и жесткость являются непрерывными по всей длине балки функциями Mx (z) и E Ix (z), то решение может быть получено, как результат последовательного интегрирования уравнения (5.19) по всей длине балки: интегрируя один раз, получаем закон изменения углов поворота , интегрируя еще раз, получаем функцию прогибов . Здесь C1 и С2 произвольные постоянные интегрирования должны быть определены из граничных условий.
Прочность На величину предела усталости влияют многие факторы. Рассмотрим некоторые из них. Одним из основных факторов, оказывающих существенное влияние на усталостную прочность, является концентрация напряжений. Основным показателем местных напряжений является коэффициент концентрации напряжений: , (9.2) где smax - наибольшее местное напряжение, sНОМ - номинальное напряжение. Например, для полосы с отверстием (рис. 9.4) от действия продольной силы Р в кольцевых сечениях, имеем: .
Определенный по (9.2) коэффициент концентрации напряжений не учитывает многих реальных свойств материала (его неоднородность, пластичность и т. д.), в связи с чем, вводится понятие эффективного коэффициента концентрации К-1.: , где - предел усталости при симметричном цикле на гладких образцах, - предел усталости при симметричном цикле на образцах с наличием концентрации напряжений. Между КT и К-1 существует следующая зависимость: , (9.3) где q - коэффициент чувствительности материала к местным напряжениям, q » 1 - для высокопрочных сталей; q = 0, 6 ¸ 0, 8 - для конструкционных сталей. При расчетах на усталостную прочность, особенности, связанные с качеством обработки поверхности детали, учитываются коэффициентом качества поверхности, получаемом при симметричных циклах нагружения: , (9.4) где s-1 - предел усталостной прочности, полученный на испытаниях образцов, имеющих стандартную обработку поверхности, s-1n - предел выносливости рассматриваемой детали. На рис. 9.5 приведены значения b в зависимости от качества обработки поверхности стального изделия и прочности материала sBP. Прямая 1 относится к шлифованным образцам, 2 - к образцам с полированной поверхностью, 3 - к образцам, имеющим поверхность обработанную резцом, и наконец, 4 - к образцам поверхность которых обработана после проката.
Для учета масштабного фактора вводятся соответствующий коэффициент: . (9.5)
где s-1D, t-1D - предел усталостной прочности рассматриваемой детали на растяжение и сдвиг, соответственно; s-1, t-1 -предел усталостной прочности образца с диаметром d =(8 ¸ 12) × × 10-3 м. Графики es, et изображены на рис. 9.6, где кривая 1 относится к углеродистой стали, 2 - к полированной стали, 3 - к полированной стали с наличием концентрации напряжений, 4 - к сталям, имеющим высокую степень концентраций напряжений.
Рис. 9.6 Пример расчета (задача № 18) Для цилиндрической клапанной пружины (рис. 9.9) двигателя внутреннего сгорания определить коэффициент запаса прочности аналитически и проверить его графически по диаграмме предельных амплитуд, построенной строго в масштабе. Диаметр пружины D = 0, 04 м, диаметр проволоки пружины d = = 0, 004 м. Сила, сжимающая пружину в момент открытия клапана, Рmax = 0, 240 кН, в момент закрытия клапана - Рmin = 0, 096 кН. Материал проволоки пружины - хромованадиевая сталь с механическими характеристиками, предел текучести tT = 900 МПа, предел выносливости при симметричном цикле t-1 = 480 МПа, предел выносливости при нулевом (пульсирующем) цикле t0 = 720 МПа. Для проволоки пружины эффективный коэффициент концентрации напряжений kt = 1, 05, коэффициент влияния качества обработки поверхности b = 0, 84, коэффициент влияния абсолютных размеров поперечного сечения et = 0, 96.
Решение 1. Определение максимального tmax и минимального tmin напряжений в проволоке пружины и вычисление коэффициента асимметрии цикла R. Для вычисления напряжений используем формулу: , где k - коэфф., учитывающий поперечную силу и неравномерность распределения напряжений от ее воздействия, а также влияние деформации изгиба вследствие кривизны витков пружины. Этот коэффициент можно определить по приближенной формуле: , где - характеристика геометрии пружины. В данном примере , тогда . Определим величины напряжений: 435, 4× 103 кН/м2, 174, 2103 кН/м2. Коэффициент асимметрии цикла: . 2. Нахождение среднего tm и амплитудного ta напряжений цикла. Найдем величину среднего и амплитудного напряжений цикла в зависимости от tmax и tmin: кН/м2, кН/м2. 3. Определение коэффициента запаса прочности. Деталь (пружина) может перейти в предельное состояние по усталости и по причине развития пластических деформаций. Коэффициент запаса прочности по усталости определяются по формулам (9.10): , где t-1 - предел выносливости при симметричном цикле; величины КP и y определяются по зависимостям, приведенным в п.9.3: . Коэффициент запаса усталостной прочности:
. Коэффициент запаса по пределу текучести можно получить аналогичными рассуждениями, как и коэффициент запаса усталостной прочности, учитывая, что предельная прямая по текучести проходит под углом 45° к горизонту (рис. 9.8). В итоге: . Так как, 1, 77 < 2, 07, то коэффициент запаса прочности для пружины определяется усталостью и равен 1, 77. Для анализа рассмотрим ситуацию, когда в момент закрытия клапана на него действует сжимающая сила Рmin = 0, 18 кН. Тогда имеем: минимальное значение напряжения: 326, 6× 103 кН/м2; среднее напряжение кН/м2; амплитудное напряжение кН/м2; коэффициент запаса прочности по усталости ; коэффициент запаса прочности по пределу текучести . Так как 2, 07 < 2, 43, то коэффициент запаса выбирается по пределу текучести и принимается равным 2, 07.
КРУЧЕНИЕ 4.1. Кручение бруса с круглым поперечным Здесь под кручением понимается такой вид нагружения, при котором в поперечных сечениях бруса возникает только крутящий момент. Прочие силовые факторы, т.е. Nz , Qx , Qy , Mx , My равны нулю. Для крутящего момента, независимо от формы поперечного сечения бруса, принято следующее правило знаков. Если наблюдатель смотрит на поперечное сечение со стороны внешней нормали и видит момент Mz направленным по часовой стрелке, то момент считается положительным. При противоположном направлении моменту приписывается отрицательный знак. При расчете бруса на кручение (вала) требуется решить две основные задачи. Во-первых, необходимо определить напряжения, возникающие в брусе, и, во-вторых, надо найти угловые перемещения сечений бруса в зависимости от величин внешних моментов. Наиболее просто можно получить решение для вала с круглым поперечным сечением (рис. 4.1 а). Механизм деформирования бруса с круглым поперечным сечением можно представить в виде. Предполагая, что каждое поперечное сечение бруса в результате действия внешних моментов поворачивается в своей плоскости на некоторый угол как жесткое целое. Данное предположение, заложенное в основу теории кручения, носит название гипотезы плоских сечений.
Рис. 4.1 Для построения эпюры крутящих моментов Mz применим традиционный метод сечений - на расстоянии z от начала координат рассечем брус на две части и правую отбросим (рис. 4.1, б). Для оставшейся части бруса, изображенной на рис. 4.1, б, составляя уравнение равенства нулю суммы крутящих моментов SMz = 0, получим: Mz = M. (4.1) Поскольку сечение было выбрано произвольно, то можно сделать вывод, что уравнение (4.1) верно для любого сечения вала -крутящий момент Mz в данном случае постоянен по всей длине бруса. Далее двумя поперечными сечениями, как это показано на рис. 4.1, а, из состава бруса выделим элемент длиной dz, а из него свою очередь двумя цилиндрическими поверхностями с радиусами r и r + dr выделим элементарное кольцо, показанное на рис. 4.1, в. В результате кручения правое торцевое сечение кольца повернется на угол dj. При этом образующая цилиндра АВ повернется на угол g и займет положение АВ ¢. Дуга BВ ¢ равна с одной стороны, r dj, а с другой стороны - g dz. Следовательно, . (4.2) Если разрезать образовавшуюся фигуру по образующей и развернуть (рис. 4.1, г), то можно видеть, что угол g представляет собой не что иное, как угол сдвига данной цилиндрической поверхности под действием касательных напряжений t, вызванных действием крутящего момента. Обозначая , (4.3) где Q - относительный угол закручивания. Этот угол представляет собой угол взаимного поворота двух сечений, отнесенный к расстоянию между ними. Величина Q аналогична относительному удлинению при простом растяжении или сжатии стержня. Из совместного рассмотрения (4.2) и (4.3) и после некоторых преобразований, получим: g = r Q. (4.4) Подставляя выражение (4.4) в выражение закона Гука для сдвига (2.23), в данном случае выражение касательных напряжений принимает следующий вид: t = G Q r, (4.5) где t - касательные напряжения в поперечном сечении бруса. Парные им напряжения возникают в продольных плоскостях - в осевых сечениях. Величину крутящего момента Mz можно определить через t с помощью следующих рассуждений. Момент относительно оси z от действия касательных напряжений t на элементарной площадке dF равен (рис. 4.2): dM = t r dF.
Проинтегрировав это выражение по площади поперечного сечения вала, получим: . (4.6) Из совместного рассмотрения (4.5) и (4.6) получим: . (4.7) Откуда . (4.8) Величина G Ir называется жесткостью бруса при кручении. Из (4.8), с учетом (4.3), интегрируя полученное выражение по параметру z, получим: . (4.9) Если крутящий момент Mz и жесткость G Ir по длине бруса постоянны, то из (4.9) получим: , (4.10) где j (0) - угол закручивания сечения в начале системы отсчета. Для определения выражения напряжений, возвращаясь к формуле (4.5) и исключая из него q, согласно (4.8), получим: t (r)= . (4.11) Величина называется полярным моментом сопротивления поперечного сечения бруса в форме сплошного круга радиусом R. Определяется эта величина из следующих соображений: (4.12) Если же в брусе имеется внутренняя центральная полость радиусом r = , то для кольца , (4.13) где с = .
Общая теория НДС
Нормальное и касательное напряжение обозначаются через s и t, соответственно, с двумя индексами: sxx , syy ,..., tzx . Первый индекс соответствует координатной оси, перпендикулярной к площадке на которой действует данное напряжение, а второй - оси, вдоль которой оно направлено. Поскольку, у нормальных напряжений оба индекса одинаковы, то для них применяют и одномерную индексацию: sxx = sx , syy = sy , и szz = sz . Ориентация осей является произвольной. Правило знаков примем следующее: если внешняя нормаль к площадке совпадает по направлению с положительным направлением соответствующей оси, то напряжение считается положительным, если оно направлено вдоль положительного направления оси, вдоль которой оно действует. Так, на рис. 10.1 все напряжения положительные. Из трех условий равновесия параллелепипеда в виде суммы моментов относительно координатных осей достаточно просто получить важные утверждения, что tyz = tzy; tzx = txz; txy = tyx. (10.1) То есть, на двух взаимно перпендикулярных площадках составляющие касательных напряжений, перпендикулярные к общему ребру, равны по величине и направлены обе либо к ребру, либо от него. Это утверждение - закон парности касательных напряжений, сформулированный в общем виде. Рассматривая же равновесие параллелепипеда в виде суммы сил по направлениям координатных осей, и отбрасывая величины второго порядка малости, легко получить дифференциальные уравнения его равновесия: ; ; (10.2) , где gx, gy, gz - составляющие объемных сил вдоль координатных осей. С учетом закона парности касательных напряжений (10.1), уравнения (10.2) содержат шесть неизвестных напряжений: sx , sy , sz , txy, txz, tyz. Поскольку количество уравнений равновесия статики (10.2), меньше, чем количество неизвестных напряжений, то в общем случае задача определения напряженного состояния в произвольной точке сплошной среды нагруженного тела, является статически неопределимой. Неразрывности Происходящие при нагружении тела перемещения его точек можно задать при помощи совокупности трех функций (см. п.1.5): u (x, y, z), v (x, y, z) и w (x, y, z), определяющих перемещения вдоль координатных осей x, y и z, соответственно. Достаточно просто можно показать, что деформации (линейные и угловые) выражаются через функции перемещений, (в случае малых перемещений, которые рассматриваются в сопротивлении материалов): (10.16) где ei - линейная деформация вдоль i-той оси координат, gij -угловая деформация в плоскости i 0j (i, j = x, y, z) (см. рис. 10.1). Популярное:
|
Последнее изменение этой страницы: 2017-03-08; Просмотров: 1827; Нарушение авторского права страницы