Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Технологический процесс производства алюминия



Технологический процесс производства алюминия включает три основных этапа:

1. Создание глинозема из алюминиевых руд;
2. Создание из глинозема алюминия;
3. Процесс рафинирования алюминия.

И при этом необходимо использование такого оборудования:

оборудование для системы центральной раздачи глинозема;
электролизер;
катодная ошиновка;
установки сухой газоочистки;
монтажные, технологические и литейные краны;
аспирационные установки;
оборудование литейного цеха;
оборудование анодно-монтажного цеха;
металлоконструкции производственных корпусов.

Создание глинозема из руд - этап производства алюминия

Глинозем можно получить тремя методами: кислотным, щелочным и электролитическим. Самым популярным является щелочной метод. Суть метода заключается в том, что алюминиевые растворы очень быстро начинают разлагаться при введении гидроокиси алюминия, а раствор, который остался от разложения после выпаривания при интенсивном перемешивании при температуре 170 С, может снова растворить глинозем, который содержится в бокситах. Данный способ имеет такие главные стадии:

1. Подготовка боксита, которая подразумевает его дробление и измельчение в специальных мельницах. В мельницы отправляют едкую щелочь, боксит и немного извести. Пульпу, которая получилась, направляют на выщелачивание.

2. Выщелачивания боксита подразумевает его химическое разложение от соединения с водным раствором щелочи. При этом гидраты окиси алюминия при соединении со щелочью в раствор переходят в форме алюмината натрия, а кремнезем, который содержится в боксите, соединяясь со щелочью, в раствор переходит в форме силиката натрия. В растворе эти соединения: алюминат натрия и силикат натрия формируют нерастворимый натриевый алюмосиликат. В этот остаток переходят окислы железа и титана, которые предают остатку красный оттенок. Такой остаток – это красный шлам. Когда растворение полученного алюмината натрия завершается, его разводят водным раствором щелочи при понижении температуры до 100°С.

3. Отделение красного шлама и алюминатного раствора друг от друга происходит благодаря промывке в сгустителях. После чего красный шлам оседает, а оставшийся алюминатный раствор фильтруют.

4. Разложение алюминатного раствора. Его фильтруют и отправляют в крупные емкости с мешалками. Из данного раствора при охлаждении до 60°С и перемешивании постоянном выделяется гидроокись алюминия. Из-за того что процесс протекает неравномерно и очень медленно, а рост кристаллов гидроокиси алюминия очень важен при дальнейшей обработке, то в эти емкости с мешалками — декомпозеры ещё добавляют много твердой гидроокиси.

5. Получение гидроокиси алюминия осуществляется в вакуум-фильтрах и гидроциклонах. Большую часть гидроокиси как затравочный материал возвращают к процедуре декомпозиции. После водной промывки остаток отправляется на кальцинацию; и фильтрат тоже возвращается в процесс.

6. Обезвоживание гидроокиси алюминия — завершающая стадия производства глинозема. Она проходит в трубчатых, постоянно вращающихся печах. Сырая гидроокись алюминия, когда проходит через печь, полностью высушивается и обезвоживается.

Создание из глинозема алюминия при производстве также проходит в несколько этапов.

1. Электролиз окиси алюминия происходит при температуре в электролизере — 970°С. Электролизер имеет футерованную углеродистыми блоками ванну, к которой подключается электрический ток. Выделившийся жидкий алюминий собирается на угольном основании, и оттуда его регулярно откачивают. В электролит сверху погружены угольные аноды, сгорающие в атмосфере кислорода, который выделяется из окиси алюминия, и при этом выделяетс я окись или двуокись углерода.

2.Электролиз хлорида алюминия осуществляется путем превращения окиси алюминия в реакционном сосуде в хлорид алюминия. После чего в изолированной ванне осуществляется электролиз хлорида алюминия. Хлор, который при этом выделился, отсасывается и направляется для вторичного использования. А алюминий выпадает в осадок на катоде.

3.Восстановление марганцем хлорида алюминия, при этом освобождается алюминий. За счет управляемой конденсации выделяются загрязнения, связанные с хлором, из потока хлорида марганца. Когда происходит освобождение хлора, хлорид марганца превращается в окись марганца, которая потом восстанавливается до состояния марганца, который пригоден к вторичному использованию.

Процесс рафинирования алюминия при производстве алюминия

Рафинирующий электролиз с разложением водных солевых растворов для алюминия невозможен. Так как степень очистки промышленного алюминия, который получен путем электролиза криолитоглиноземного расплава, для некоторых целей будет недостаточна, то из отходов металла и промышленного алюминия благодаря рафинированию получают алюминий еще более чистый. Самым распространённым методом рафинирования является трехслойный электролиз.

Алюминий применяется в изготовлении взрывчатых веществ (алюмотол, аммонал). Широко используются разнообразные соединения алюминия. Производство и потребление алюминия постоянно растет, сильно опережая по темпам роста производство меди, стали, цинка, свинца.

 

 

№16

 

Для получения меди применяют медные руды, а также отходы меди и её сплавы. В рудах содержится 1 – 6% меди. Руду, содержащую меньше 0, 5% меди, не перерабатывают, так как при современном уровне техники извлечение из неё меди нерентабельно.

В рудах медь находится в виде сернистых соединений (CuFeS2 – халько-пирит, Cu2S – халькозин, CuS – ковелин), оксидов (CuO, CuO) и гидрокарбонатов [CuCO3·Cu(OH)2, 2CuCO3·Cu(OH)2]

Пустая порода руд состоит из пирита (FeS2), кварца (SiO2), различных соединений содержащих Al2O3, MgO, CaO, и оксидов железа.

В рудах иногда содержится значительные количества других металлов (цинк, золото, серебро и другие).

Известны два способа получения меди из руд:

  • гидрометаллургический;
  • пирометаллургический.

Гидрометаллургический не нашел своего широкого применения из-за невозможности извлекать попутно с медью драгоценные металлы.

Пирометаллургический способ пригоден для переработки всех руд и включает следующие операции:

  • подготовка руд к плавке;
  • плавка на штейн;
  • конвертирование штейна;
  • рафинирование меди.

Подготовка руд к плавке

Подготовка руд заключается в проведении обогащения и обжига. Обогащение медных руд проводят методом флотации. В результате получают медный концентрат, содержащий до 35% меди и до 50% серы. Концентраты обжигают обычно в печах кипящего слоя с целью снижения содержания серы до оптимальных значений. При обжиге происходит окисление серы при температуре 750 – 800 °С, часть серы удаляется с газами. В результате получают продукт, называемый огарком.

Плавку на штейн

Плавку на штейн ведут в отражательных или электрических печах при температуре 1250 – 1300 °С. В плавку поступают обожженные концентраты медных руд, в ходе нагревания которых протекают реакции восстановления оксида меди и высших оксидов железа

6CuO + FeS = 3Cu2O + FeO + SO2

FeS + 3Fe3O4 + 5SiO2 = 5(2FeO·SiO2) + SO2

В результате взаимодействия Cu2O с FeS образуется Cu2S по реакции:

Cu2O + FeS = Cu2S + FeO

Сульфиды меди и железа, сплавляясь между собой, образуют штейн, а расплавленные силикаты железа, растворяя другие оксиды, образуют шлак. Штейн содержит 15 – 55% Cu; 15 – 50% Fe; 20 – 30% S. Шлак состоит в основном из SiO2, FeO, CaO, Al2O3.

Штейн и шлак выпускают по мере их накопления через специальные отверстия.

Конвертирование штейна

Конвертирование штейна осуществляется в медеплавильных конвертерах (рисунок 44) путем продувки его воздухом для окисления сернистого железа, перевода железа в шлак и выделения черновой меди.

Конвертеры имеют длину 6 – 10 м и наружный диаметр 3 – 4 м. Заливку расплавленного штейна, слив продуктов плавки и удаление газов осуществляют через горловину, расположенную в средней части корпуса конвертера. Для продувки штейна подается сжатый воздух через фурмы, расположенные по образующей конвертера. В одной из торцевых стенок конвертера расположено отверстие, через которое проводится пневматическая загрузка кварцевого флюса, необходимого для удаления железа в шлак.
Процесс продувки ведут в два периода. В первый период в конвертер заливают штейн и подают кварцевый флюс. В этом периоде протекают реакции окисления сульфидов

Образующаяся закись железа взаимодействует с кварцевым флюсом и удаляется в шлак

По мере накопления шлака его частично сливают и заливают в конвертер новую порцию исходного штейна, поддерживая определенный уровень штейна в конвертере. Во втором периоде закись меди взаимодействует с сульфидом меди, образуя металлическую медь

Таким образом, в результате продувки получают черновую медь, содержащую 98, 4 – 99, 4% Cu. Полученную черновую медь разливают в плоские изложницы на ленточной разливочной машине.

 

№ 17

Технология производство магния

 

Основной способ производства магния — электролитический. Электролитическое получение магния из водных растворов невозможно, так как электрохимический потенциал магния значительно более отрицательный, чем потенциал разряда ионов водорода на катоде. Поэтому электролиз магния ведут из его расплавленных солей.

 

Основная составляющая электролита — хлористый магний МgCl2, а для снижения температуры плавления электролита и повышения его электропроводности в него вводят NаСl, СаСl2, КСl и небольшие количества NaF и СаF2.

 

Основным сырьем для получения магния являются карналлит (МgСl2•КСl•6Н2О), магнезит (МgСО3), доломит (СаСО3•МgСО3), бишофит (МgСl2•6Н2О). Наибольшее количество магния получают из карналлита.

 

Основные этапы производства магния:

 

1. Карналлит;


2. Обогащение карналлита;


3. Обезвоживание карналлита;


4. Электролитическое получение магния;


5. Рафинирование магния;


6. Магний.

 

Обогащение карналлита является первой стадией его переработки. Сущность процесса обогащения сводится к отделению КСl и нерастворимых примесей путем перевода в водный раствор МgСl2 и КСl. При охлаждении полученного раствора в вакуум-кристаллизаторах выпадают кристаллы искусственного карналлита МgСl2•КСl•6Н2О, которые отделяют фильтрованием.

 

Карналлит обезвоживают в две стадии. Первую стадию проводят в трубчатых печах или печах кипящего слоя при 550—600° С. Под действием теплоты нагретых газов карналлит обезвоживается и после такой обработки содержит 3—4% влаги.

 

Вторую стадию обезвоживания осуществляют либо плавкой полученного после первой стадии карналлита в электропечах с последующим отстаиванием окиси магния, либо хлорированием карналлита в расплавленном состоянии.

 

Электролитическое получение магния. Для этой цели применяют электролизер, который изнутри футерован шамотным кирпичом. Анодами служат графитовые пластины, а катодами — стальные пластины, расположенные по обе стороны анода.

 

Для электролитического разложения хлористого магния через электролит пропускают ток под напряжением 2, 7—2, 8 В.

 

В результате электролитического разложения хлористого магния образуются ионы хлора, которые движутся к аноду и после разряда создают пузырьки хлора, выходящие из электролита. Ионы магния движутся к катоду и после разряда выделяются на поверхности, образуя капельки жидкого магния. Магний имеет меньшую плотность, чем электролит, поэтому он всплывает на его поверхность в катодном пространстве, откуда периодически удаляется с помощью вакуумного ковша.

 

В процессе электролиза в электролите повышается концентрация других хлоридов за счет расходования МgСl2. Поэтому периодически часть отработанного электролита удаляют из ванны и вместо него заливают расплав МgСl2 или карналлита. В результате частичного разложения примесей на дне ванны образуется шлам, который регулярно удаляют из ванны.

 

Рафинирование магния. В электролизных ваннах получают черновой магний, который содержит 5% примесей: металлические примеси (Fе, Na, К, Аl, Са) и не металл примеси (МgСl2, КСl, NaCl, СаСl2, МgО). Магний очищают (рафинируют) переплавкой с флюсами.

 

№18


Поделиться:



Популярное:

  1. I. СИСТЕТЕХНИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ПРОИЗВОДСТВА ЭЛЕКТРОННЫХ СРЕДСТВ
  2. I. Технологический регламент проведения аттестации сварщиков
  3. III.5. Анализ урока с учетом закономерностей процесса мышления
  4. IV. Политика и гражданское общество. Гармонизация межконфессиональных, межнациональных, миграционных процессов.
  5. V этап. Сестринский анализ эффективности проводимого сестринского процесса.
  6. V) Построение переходного процесса исходной замкнутой системы и определение ее прямых показателей качества
  7. ІІ. Политические процессы в 1980—1990-е гг.
  8. АВТОМАТИЗАЦИЯ СЕРИЙНОГО ПРОИЗВОДСТВА
  9. Автоматическое регулирование процесса
  10. Автоматическое регулирование процесса сварки электронным лучом
  11. АДМИНИСТРАТИВНО-ПРОЦЕССУАЛЬНЫЙ КОДЕКС
  12. Администрация же самого ГУМа практически перестала влиять на торговый процесс, управлять товарооборотом, равно как и обслуживанием покупателей.


Последнее изменение этой страницы: 2017-03-08; Просмотров: 1069; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.026 с.)
Главная | Случайная страница | Обратная связь