Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Движение и физическое взаимодействие



Связь, взаимодействие и движение представляет собой важнейшие атрибуты материи, без которых невозможно ее существование. Долгое время в научной картине мира ведущая роль отводилась движению. Оно считалось важнейшей характеристикой материи. В широком смысле движение трактовалось как любое изменение, происходящее в природе. Но в физике движение понималось как механическое перемещение, изменение положения тела в пространстве с течением времени относительно выбранной точки отсчета. При этом признавалось, что в мире существуют и другие формы движения: биологическая, социальная, химическая, геологическая и др.

Несмотря на качественное разнообразие, у всех форм движения есть одна общая черта. Все они сводятся к взаимодействию тел, которое обусловливает соединение различных материальных элементов в системы, их структурные связи и контакты с другими материальными системами. Взаимодействие — универсальная форма движения и развития, оно определяет существование и структурную организацию любой материальной системы. Таким образом, получается, что все свойства тел производны от взаимодействий. Для всякого объекта существовать — значит взаимодействовать, т.е. каким-либо образом проявлять себя по отношению к другим телам, находиться с ними в объективных отношениях.

Взаимодействие представляет собой развертывающийся во времени и пространстве процесс воздействия одних объектов на другие путем обмена материей и движением. Взаимодействие всегда выступает как движение материи, а любое движение включает в себя различные виды взаимодействия. По существу, эти понятия совпадают, хотя часто употребляются в разных контекстах. Когда мы говорим о движении, то имеем в виду не столько внутренние изменения, основанные на структурных взаимодействиях элементов системы, сколько внешнее пространственное перемещение тел, где взаимодействия как будто не видно. Но если взглянуть глубже, то и при пространственном перемещении тел обязательно есть их взаимодействие с окружающей средой и материальными полями, в ре-


зультате чего изменяются свойства тел. Не существует такого движения, в содержании которого не было бы взаимодействия элементов материи. В то же время всякое взаимодействие выступает как определенное изменение и движение.

Общая характеристика физического взаимодействия

Описание процесса взаимодействия, раскрытие его механизма и форм проявления составляют одну из центральных задач всей физики. В контексте этой задачи в науке сформировались два различных способа описания механизма физического взаимодействия, основывающиеся на принципах дальнодействия и близкодействия.

Исторически первым был сформулирован принцип дальнодействия. Как было отмечено ранее, его автором стал И. Ньютон, который с помощью данного принципа пытался объяснить механизм действия гравитационных сил. Согласно принципу дальнодействия взаимодействие между телами происходит мгновенно на любом расстоянии, без каких-либо материальных носителей и посредников (агентов взаимодействия).

В XIX в. был сформулирован принцип близкодействия, который в настоящее время существует в двух вариантах. Первый вариант был предложен М. Фарадеем, который считал, что взаимодействие между телами переносится полем от точки к точке с конечной скоростью. В XX в. принцип близкодействия был уточнен, в его современном варианте утверждается, что каждое фундаментальное физическое взаимодействие переносится соответствующим полем от точки к точке со скоростью, не превышающей скорость света в вакууме.

Обычно при физическом взаимодействии между двумя телами происходит частичный обмен импульсом и энергией. Если рассмотреть этот процесс более детально, то мы увидим, что в один момент времени первый объект потерял доли импульса и энергии, а второй объект в следующий момент времени их приобрел. В промежутке между первым и вторым моментами времени импульс и энергия должны принадлежать какому-то третьему материальному объекту — посреднику, который должен переместиться от первого объекта ко второму, затратив на это какое-то время.

На небольших расстояниях этим дополнительным временем можно пренебречь. Так, когда мы нажимаем кнопку выключателя, свет для нас загорается практически мгновенно. Однако чтобы свет дошел от Солнца до Земли, требуется уже около 8 минут, т.е. время для переноса взаимодействия становится заметным.

Таким образом, с точки зрения современной науки физическое взаимодействие всегда подчиняется принципу близкодействия, т.е.


идет с некоторым запаздыванием. Но во многих задачах, описывающих механические процессы с медленно движущимися объектами, этим запаздыванием можно пренебречь и приближенно считать его нулевым. Следовательно, многие процессы можно описывать, используя приближенный принцип дальнодействия.

В XX в. физика смогла еще глубже проникнуть в тайны физического взаимодействия, понять его механизм на уровне процессов, происходящих в микромире. Также удалось свести многочисленные виды взаимодействий, известные в физике, к небольшому числу фундаментальных физических взаимодействий. Любые формы движения, изучаемые физикой, есть проявление глубинных свойств материи — так называемых фундаментальных физических взаимодействий. Это силы гравитационного, электромагнитного, сильного и слабого взаимодействий.

В основе каждого фундаментального физического взаимодействия лежит изначально присущее веществу особое свойство, природу которого удастся выяснить лишь в ходе дальнейших исследований природы вещества и вакуума. В качестве носителя способности частиц к взаимодействию, а также количественной мерой самого взаимодействия служит понятие заряда. Каждая частица изначально обладает одним или несколькими зарядами, причем между собой взаимодействуют только однотипные заряды, а заряды разных типов друг друга «не замечают». Наименьшее дискретное значение заряда — квант — называют единичным зарядом. Сила взаимодействия во всех случаях пропорциональна произведению зарядов двух взаимодействующих частиц, более сложно она зависит от расстояния между частицами.

Согласно современным представлениям любое взаимодействие происходит в соответствии с принципом близкодействия. Поэтому взаимодействие любого вида должно иметь своего физического агента, без посредника оно не протекает. В основе такого требования лежит тот факт, что скорость передачи воздействия ограничена фундаментальным пределом — скоростью света. Воздействие передается через среду, разделяющую взаимодействующие частицы. Такой средой является вакуум, который в обыденном представлении ассоциируется с пустотой. На самом деле вакуум — это реальная физическая система, поле с минимальной энергией. Из него можно получить все другие состояния поля.

Для создания модели физического взаимодействия нужно вспомнить, что материя может быть разделена на поле и вещество, которые соответственно представлены частицами-бозонами и час-тицами-фермионами. В процессе физического взаимодействия всегда участвуют только частицы-фермионы (частицы вещества), а переносят взаимодействие частицы-бозоны (кванты полей).


,


Таким образом, теория физического взаимодействия использует следующую модель процесса:

• заряд-фермион создает вокруг частицы поле, порождающее присущие ему частицы-бозоны. Заряд частицы возмущает вакуум, и это возмущение с затуханием передается на определенное расстояние;

• частицы поля являются виртуальными — существуют очень короткое время и в эксперименте не могут быть обнаружены;

• оказавшись в радиусе действия однотипных зарядов, две реальные частицы начинают стабильно обмениваться виртуальными бозонами: одна частица испускает бозон и тут же поглощает идентичный бозон, испущенный частицей-партнером, и наоборот;

• обмен бозонами создает эффект притяжения или отталкивания частиц-хозяев.

Таким образом, каждой частице, участвующей в одном из фундаментальных взаимодействий, соответствует своя бозонная частица — переносчик взаимодействия.

Типы взаимодействий

Рассмотрим подробнее существующие физические взаимодействия. Для каждого взаимодействия можно назвать сферу его применения и значение для строения Вселенной, заряд — носитель взаимодействия и частицу — переносчик взаимодействия, результаты взаимодействия, место среди других взаимодействий, а также особенности, отличающие от других фундаментальных взаимодействий.

Гравитационное взаимодействие первым из всех известных сегодня фундаментальных взаимодействий стало предметом исследования ученых. В классической науке оно описывается законом всемирного тяготения, согласно которому между двумя телами существует сила притяжения, которая прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. Отсюда следует, что любая материальная частица является источником гравитационного взаимодействия и испытывает его на себе. По мере увеличения массы вещества гравитационные взаимодействия возрастают, т.е. чем больше масса взаимодействующих веществ, тем сильнее действуют гравитационные силы.

Гравитационное взаимодействие является наиболее слабым из всех известных современной науке взаимодействий, оно в 1040 раз слабее силы взаимодействия электрических зарядов. Чтобы эта величина стала понятнее, можно провести следующую аналогию: если бы размеры атома водорода определялись гравитацией, а не электромагнитными силами, то радиус электрона в нем превосходил бы радиус доступной наблюдению части Вселенной.


Гравитация, будучи очень слабой силой, тем не менее определяет строение всей Вселенной: образование всех космических систем, существование планет, звезд и галактик, концентрацию рассеянной в ходе эволюции звезд и галактик материи и включение ее в новые циклы развития. Такая огромная роль гравитационного взаимодействия определяется его универсальностью. Ничто во Вселенной не может избежать этой силы. Все тела и частицы, не только имеющие массу, а также поля, участвуют в гравитационном взаимодействии. Это было выяснено еще Ньютоном в открытом им законе всемирного тяготения, который описывает гравитационное взаимодействие. Поэтому в микромире гравитационная сила слаба, она теряется на фоне куда более могучих сил. Зато в макромире она господствует. Правда, как считают ученые, при некоторых условиях гравитация может сравняться по своей значимости с другими силами, господствующими в микромире. Для этого требуется, чтобы вещество находилось в состоянии экстремально высокой плотности, равной 1094 г/см3 (планковская плотность).

Гравитационная сила действует на очень больших расстояниях, ее интенсивность с увеличением расстояния убывает, но не исчезает полностью.

С точки зрения современной науки гравитационное взаимодействие должно происходить по предложенной нами модели. Гравитационный заряд равен инертной массе вещества. Он создает вокруг себя гравитационное поле (поле тяготения). Это поле должно иметь свою бозонную частицу. Ее назвали гравитоном. Силы тяготения являются результатом постоянного обмена между гравитонами, или гравитационными волнами. Они переносят энергию, обладают пространственно-временными свойствами, импульсом и другими характеристиками, присущими материальным объектам. Поскольку экспериментально эта частица еще не обнаружена, она считается гипотетической. Тем не менее, косвенно ее существование удалось подтвердить.

Согласно современным представлениям движение тела, обладающего массой, под действием силы вызывает возмущение своего же гравитационного поля, распространяющегося со скоростью света в форме гравитационной волны. Поскольку гравитационная сила очень мала, то ее волна имеет малую амплитуду. Даже такие грандиозные космические события, как взрыв сверхновой или коллапс массивной звезды, создают гравитационные волны, лежащие за пределами чувствительности современных регистрирующих приборов. Именно поэтому гравитоны до сих пор не обнаружены.

Для гравитации не существует противоположной эквивалентной силы отталкивания (антигравитации). Даже в антимире, если он существует, все античастицы обладают положительными значения-


ми массы и энергии. Поэтому гравитация всегда проявляется только как притяжение.

Электромагнитное взаимодействие обладает универсальным характером и осуществляется между любыми телами в микро-, макро-и мегамире. Благодаря электромагнитным связям возникают атомы, молекулы и макроскопические тела. Все химические реакции представляют собой проявление электромагнитных взаимодействий, являются результатами перераспределения связей между атомами в молекулах, перестройки электронных оболочек атомов и молекул, а также количества и состава атомов в молекулах разных веществ. К электромагнитному взаимодействию сводятся все обычные силы: силы упругости, трения, поверхностного натяжения; им определяются агрегатные состояния вещества, оптические явления и др.

По своей величине электромагнитные силы намного превосходят гравитационные, занимая второе место на шкале взаимодействий. Поэтому эти силы легко наблюдать даже между телами обычных размеров. Но, как и гравитационные силы, электромагнитные взаимодействия являются дальнодействующими, их действие ощутимо на больших расстояниях от источника. Как и гравитация, электромагнитное взаимодействие подчиняется закону обратных квадратов, уменьшается с расстоянием, но не исчезает.

В отличие от гравитационной силы, электромагнитные взаимодействия существуют только между заряженными частицами: электрическое поле — между двумя покоящимися заряженными частицами, магнитное — между двумя движущимися заряженными частицами.

В современной физической картине мира основой теории электромагнитного взаимодействия является теория электромагнитного поля Дж. Максвелла. Однако современная физика создала более совершенную и точную теорию электромагнетизма, в которой учтены квантово-полевые аспекты явления. Эта теория названа квантовой электродинамикой. Электрический заряд создает поле, переносчиками этого типа взаимодействия являются фотоны. В случае разноименных зарядов обмен создает эффект притяжения, а в случае одноименных — отталкивания. В этом состоит еще одно отличие электромагнитного взаимодействия от гравитационного, которое проявляется только как притяжение.

Слабое взаимодействие — третий тип фундаментального взаимодействия, которое действует только в микромире. Физической основой этого типа взаимодействия служит процесс распада частиц, поэтому его открытие произошло вслед за открытием радиоактивности. Слабое взаимодействие ответственно за превращение элементарных частиц друг в друга и играет очень важную роль не только в микромире, но и во многих явлениях космического мас-


штаба. Благодаря слабому взаимодействию происходят термоядерные реакции, без которых погасло бы Солнце и большинство звезд.

Слабое взаимодействие значительно слабее электромагнитного, но больше гравитационного, и в отличие от них распространяется на небольших расстояниях. Именно поэтому долгое время слабое взаимодействие экспериментально не наблюдалось.

Первая теория слабого взаимодействия была создана в 1934 г. Э. Ферми и развита в 1950-е гг. М. Гелл-Манном, Р. Фейнманом и другими учеными. В ней утверждалось, что взаимодействие между частицами происходит контактно, посредством так называемых слабых токов, а не через обмен квантами поля. Благодаря этим токам нейтроны могли превращаться в протоны, кварки одного вида — в кварки другого вида.

Однако к концу 50-х гг. XX в. новые физические исследования показали, что данная теория несовершенна, поскольку она работает только при малых энергиях частиц, участвующих во взаимодействии. Поэтому в 1960-е гг. независимо друг от друга С. Вайнберг и А. Салам решили, что трудности теории удастся преодолеть, если допустить, что слабое и электромагнитное взаимодействия — это разные проявления одного взаимодействия наподобие того, как электричество и магнетизм — два проявления единой сущности. Так появилась единая теория электрослабого взаимодействия, в рамках которой удалось построить модель слабого взаимодействия.

Модель слабого взаимодействия рассматривает два типа фундаментальных взаимодействий как проявление единого, более глубокого электрослабого взаимодействия. Так, на расстоянии более 10-17 см преобладает электромагнитный тип, а на меньших расстояниях в одинаковой степени важны и элетромагнитный, и слабый типы.

Теория электрослабого взаимодействия исходит из существования единого фундаментального заряда, отвечающего одновременно и за слабое, и за электромагнитное взаимодействия. При очень высоких температурах (энергиях), сравнимых с теми, которые имели место в первые мгновения существования Вселенной после Большого взрыва, структура вакуума нарушается, и она не может помешать проявлению такого заряда. Тогда слабое и электромагнитное взаимодействия сливаются воедино. При понижении температуры наступает критический момент, после которого вакуум переходит в иную, более упорядоченную форму. В результате заряд распадается на две части — электромагнитный и слабый заряд, а переносчик электрослабого взаимодействия — на четыре составляющих (фотон — переносчик электромагнитного взаимодействия и три тяжелых векторных бозона — переносчики слабого взаимодействия).

Объединение электромагнитного и слабого взаимодействий стало важным научным открытием, поскольку позволило успешно описать все процессы, происходящие при энергиях от долей элек-


тронвольта до сотен гигаэлектронвольт. Кроме того, эта теория позволила также объяснить превращение элементарных частиц друг в друга и понять сущность и механизм протекания термоядерных реакций, происходящих на Солнце и большинстве звезд.

Сильное взаимодействие, занимающее первое место по силе и являющееся источником огромной энергии, также было открыто только в XX в. Основная функция сильного взаимодействия — соединять кварки и антикварки в адроны. С его помощью ученые объяснили, почему протоны ядра атома не разлетаются под действием электромагнитных сил отталкивания.

Исходным положением теории является постулат о существовании трех типов цветовых зарядов (красного, синего, зеленого). Они присущи кваркам и выражают способность вещества к сильному взаимодействию. Цвет кварков подобен электрическому заряду. Как и электрические заряды, одноименные цвета отталкиваются, разноименные — притягиваются. Когда три кварка или кварк и антикварк объединяются в адрон, суммарная комбинация цветовых зарядов в нем такова, что адрон в целом обладает цветовой нейтральностью.

Цветовые заряды создают поля с присущими им квантами — бозонами. Переносчики сильного взаимодействия названы глюонами (от англ. glue — клей). Они, подобно фотонам, имеют спин, равный единице, и массу, равную нулю. Но электромагнитное взаимодействие является дальнодействующим, а сильное взаимодействие имеет очень ограниченный радиус действия — до 10-13 см (порядка атомного ядра).

Электрический заряд есть только один, хотя он и может принимать положительные и отрицательные значения. Поэтому фотоны — переносчики электромагнитного взаимодействия — электрически нейтральны, они не переносят заряда. Когда кварки взаимодействуют друг с другом, они излучают глюоны и переходят в другое цветовое состояние. Поэтому глюоны тоже имеют цветовой заряд. Всего существует восемь глюонов — переносчиков сильного взаимодействия.

Как мы видели ранее, все фундаментальные взаимодействия зависят от расстояния между зарядами — с уменьшением расстояния между ними сила взаимодействия возрастает (обратно пропорциональная зависимость). Сильное взаимодействие тоже зависит от расстояния между цветовыми зарядами, но прямо пропорционально. Из-за особых свойств глюонного поля цветовое взаимодействие между кварками тем меньше, чем они ближе расположены друг к другу. На малых расстояниях кварки перестают влиять друг на друга и ведут себя как свободные частицы. Но как только расстояние между кварками начинает увеличиваться, сила взаимодействия возрастает. Для разделения двух частиц с цветовыми зарядами понадобилась бы бесконечно большая энергия. Лишь в первые моменты по-


сле Большого взрыва в силу существовавших огромных температур было возможно свободное существование кварков.

Ядерное взаимодействие. До открытия кварков и цветового взаимодействия фундаментальным считалось ядерное взаимодействие, объединяющее протоны и нейтроны в ядрах атомов. Однако с открытием кваркового уровня вещества под сильным взаимодействием стали понимать цветовые взаимодействия между кварками, объединяющимися в адроны. Ядерные силы перестали считаться фундаментальными, они должны как-то выражаться через цветные силы. Теория предполагает, что при сближении барионов (протонов и нейтронов) на расстояние меньшее, чем 10-13 см, они теряют свои индивидуальные особенности, глюонный обмен между кварками, удерживающий их в адронах, принимает коллективный характер. Таким образом, кварки всех барионов связываются в единую систему — атомное ядро.

Ядерные силы — это только отголоски цветовых сил, слабое подобие настоящего сильного взаимодействия. Не случайно для того, чтобы расколоть атомное ядро, нужна совсем небольшая энергия. Расколоть же протон или нейтрон невозможно.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-09; Просмотров: 816; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.034 с.)
Главная | Случайная страница | Обратная связь