Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Эпюры внутренних усилий при растяжении-сжатии и кручении



Эпюры внутренних усилий при растяжении-сжатии и кручении

Ключевые слова: Нормальное сечение. Нормальная сила. Внутренний крутящий момент.

Эпюры внутренних усилий при растяжении-сжатии

Растяжением или сжатием называется такой простой вид сопротивления, при котором внешние силы приложены вдоль продольной оси бруса, а в поперечном сечении его возникает только нормальная сила.

Рассмотрим расчетную схему бруса постоянного поперечного сечения с заданной внешней сосредоточенной нагрузкой Р и распределенной q, (рис.1).

Пусть . Прежде всего определим опорную реакцию R, задавшись ее направлением вдоль оси х.

Брус имеет 2 участка и .

В пределах первого участка мысленно рассечем брус на 2 части нормальным сечением и рассмотрим равновесие, допустим левой части, введя следующую координату х1, рис.1 б:

Следовательно, в пределах первого участка брус претерпевает сжатие постоянной нормальной силой.

Аналогично поступим со вторым участком. Мысленно рассечем его сечением 2-2, и рассмотрим равновесие левой части (рис.1 в).Установим предварительно границы изменения х2:

Подставляя граничные значения параметра х2, получим:

Таким образом, в пределах второго участка брус растянут и нормальная сила изменяется по линейному закону.

Аналогичный результат получается и при рассмотрении правой отсеченной части (рис.1 г):

На основе полученных данных строится эпюра нормальных сил в виде графика распределения нормальной силы по длине бруса (рис.1 д). Характерно, что скачки на эпюре обусловлены наличием в соответствующих сечениях сосредоточенных сил R и Р.

Эпюры внутренних усилий при кручении

Кручением называется простой вид сопротивления, при котором к брусу (валу) прикладываются внешние пары сил в плоскостях, совпадающих с поперечным сечением вала, а в последних возникает только внутренний крутящий момент.

Рассмотрим расчетную схему вала, нагруженного двумя сосредоточенными моментами М и 2М и распределенными по длине: m, рис.2.

Методика построения эпюры аналогична только что рассмотренной методике при растяжении-сжатии.

В исходных сечениях № 1, 2 и 3 задаются положительными значениями внутренних крутящих моментов М1, М2, М3. Пусть М=ml.

Для первого участка (рис.2 б):

Для второго участка (рис.2 в):

Для третьего участка (рис.2 г):

Границы измерения параметра х3 в следующей системе координат:

Тогда:

Отмеченные значения ординат откладываются на эпюре внутренних крутящих моментов (рис.2 д).

 

Механические характеристики конструкционных материалов

Ключевые слова: упругое состояние; пластичное состояние; пределы пропорциональности, упругости, текучести, прочности.

Механические характеристики определяются следующими факторами:

  • веществом, его структурой и свойствами;
  • конструктивными особенностями элемента, т. е, размерами, формой, наличием концентраторов, состоянием поверхности;
  • условиями при нагружении: температурой, скоростью, повторяемостью нагрузки и др.

Конструкционные материалы в процессе деформирования вплоть до разрушения ведут себя по разному. Пластичное поведение характеризуется существенным изменением формы и размеров, при этом к моменту разрушения развиваются значительные деформации, не исчезающие после снятия нагрузки. Такие материалы называют пластичными. При хрупком поведении разрушение наступает при весьма малых деформациях, и материалы с такими свойствами называют хрупкими. Однако одни и те же конструкционные материалы, находящиеся в различных условиях деформирования, ведут себя по разному: при одних условиях проявляют себя как пластичные материалы, при других - как хрупкие. В связи с этим, основные макромеханические характеристики материалов - упругость, пластичность, вязкость и др. правильнее относить не к их свойствам, а к состояниям материала.

Растяжение (сжатие) призматических стержней

Ключевые слова: прочность, перемещение, концентрация напряжений, напряженное состояние.

Понятие о составных балках

Работу составных балок проиллюстрируем на простом примере трехслойной балки прямоугольного поперечного сечения. Если слои между собой не связаны и силы трения между ними отсутствуют, то каждый из них деформируется как отдельная балка, имеющая свой нейтральный слой (рис. 1, а). Нагрузка между этими балками распределяется пропорционально их жесткостям при изгибе (в данном примере поровну). Это означает, что моменты инерции и моменты сопротивления трех независимо друг от друга деформирующихся балок должны быть просуммированы

Если скрепить балки сваркой, болтами или другим способом (рис. 1, б), то с точностью до пренебрежения податливостью наложенных связей сечение балки будет работать как монолитное с моментом инерции и моментом сопротивления, равным

Как видно, при переходе к монолитному сечению жесткость балки возрастает в девять раз, а прочность - в три раза. В инженерной практике наиболее распространены сварные двутавровые балки.

Расчет валов

Рассмотрим расчет вала на прочность и жесткость. Пусть известна мощность W (кВт), передаваемая вращающимся с заданным числом оборотов в минуту (n) валом от источника мощности (например, двигателя) к ее потребителю (например, станку), а момент m, передаваемый валом, требуется найти, так как численно равный этому моменту крутящий момент необходим для расчета вала.

Если число оборотов вала в минуту п и соответствующая угловая скорость w(с-1) постоянны, а Ф - угол поворота вала в данный момент времени t, то работа вращательного движения А=mФ. Тогда передаваемая валом мощность будет равна

Отсюда

кНм

где учтено, что .

Если мощность подается на вал через ведущий шкив, а раздается потребителям через несколько ведомых шкивов, то соответственно определяются моменты на шкивах, а затем строится эпюра крутящих моментов. Расчет вала на прочность и жесткость ведется, очевидно, по max Mz.

Определение диаметра вала из условия прочности. Условие прочности при кручении вала имеет вид (7), где допускаемые напряжения [t] принимаются пониженными по сравнению с допускаемыми напряжениями обычного статического расчета в связи с необходимостью учета наличия концентраторов напряжений (например, шпоночных канавок), переменного характера нагрузки и наличия наряду с кручением и изгиба вала.

Требуемое значение Wp=dз/16 получаем из условия (7), принимая в нем знак равенства

откуда получаем формулу для диаметра вала кругового сечения

Определение диаметра вала из условия жесткости. Условие жесткости состоит в наложении ограничения на погонный угол закручивания вала , так как недостаточно жесткие валы не обеспечивают устойчивой передачи мощности и подвержены сильным колебаниям:

Тогда, учитывая, что Jp=pd4/32, для диаметра вала из условия жесткости имеем

Аналогично проводятся расчеты и для вала кольцевого поперечного сечения.

 

Эпюры внутренних усилий при растяжении-сжатии и кручении

Ключевые слова: Нормальное сечение. Нормальная сила. Внутренний крутящий момент.


Поделиться:



Популярное:

  1. A. Оказание помощи при различных травмах и повреждениях.
  2. A. особая форма восприятия и познания другого человека, основанная на формировании по отношению к нему устойчивого позитивного чувства
  3. B. Принципы единогласия и компенсации
  4. Cочетания кнопок при наборе текста
  5. D-технология построения чертежа. Типовые объемные тела: призма, цилиндр, конус, сфера, тор, клин. Построение тел выдавливанием и вращением. Разрезы, сечения.
  6. EP 3302 Экономика предприятия
  7. Exercise 5: Образуйте сравнительные степени прилагательных.
  8. H. Приглаживание волос, одергивание одежды и другие подобные жесты
  9. I. «Движение при закрытой автоблокировке (по путевой записке).
  10. I. Если глагол в главном предложении имеет форму настоящего или будущего времени, то в придаточном предложении может употребляться любое время, которое требуется по смыслу.
  11. I. Запоры — основная причина стресса
  12. I. ПРИЕМЫ ИЗМЕРЕНИЙ И СТАТИСТИЧЕСКИЕ СПОСОБЫ ОБРАБОТКИ ИХ РЕЗУЛЬТАТОВ В ПСИХОЛОГИЧЕСКОМ ИССЛЕДОВАНИИ


Последнее изменение этой страницы: 2017-03-10; Просмотров: 864; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.017 с.)
Главная | Случайная страница | Обратная связь