Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Приемы конструктивных решений зданий



 

Проектирование конструкций здания любого назначения начинают с решения основной принципиальной задачи – выбора конструктивной системы здания исходя из функциональных и технико-экономических требований.

Конструктивная система – это взаимосвязанная совокупность вертикальных и горизонтальных несущих конструкций здания, которые, воспринимая все приходящиеся на него нагрузки и воздействия, совместно обеспечивают прочность, пространственную жесткость и устойчивость сооружения.

Выбор конструктивной системы определяет роль каждого несущего конструктивного элемента в пространственной работе здания.

Горизонтальные несущие конструкции (покрытия и перекрытия) воспринимают все приходящиеся на них вертикальные нагрузки и передают их вертикальным несущим конструкциям (стенам, колоннам и др.), которые, в свою очередь, передают нагрузки через фундамент на грунт (основание здания). Горизонтальные несущие конструкции, как правило, играют в здании роль жестких дисков – горизонтальных диафрагм жесткости. Они воспринимают и перераспределяют горизонтальные нагрузки и воздействия (ветровые, сейсмические) между вертикальными несущими конструкциями.

Горизонтальные несущие конструкции гражданских зданий высотой более двух этажей, как правило, однотипны и представляют собой железобетонный диск – сборный (из отдельных железобетонных сплошных, многопустотных или ребристых плит), сборно-монолитный или монолитный. Также в многоэтажных промышленных зданиях (реже – в гражданских зданиях) используют перекрытия по металлическим балкам (балочные) и профилированному стальному настилу. Исходя из противопожарных требований в ряде случаев такие перекрытия впоследствии замоноличивают бетоном.

Вертикальные несущие конструкции по сравнению с горизонтальными более разнообразны. Различают следующие виды вертикальных несущих конструкций:

- стержневые (стойки каркаса);

- плоскостные (стены, диафрагмы);

- объемно-пространственные элементы высотой в этаж (объемные блоки);

- внутренние объемно-пространственные полые стержни (открытого или закрытого сечения) на высоту здания (стволы жесткости);

- объемно-пространственные внешние несущие конструкции на высоту здания в виде тонкостенной оболочки замкнутого сечения (оболочки).

Соответственно виду вертикальной несущей конструкции получили наименование пять основных конструктивных систем зданий:

- каркасная;

- бескаркасная (стеновая);

- объемно-блочная;

- ствольная;

- оболочковая.

Наряду с основными широко применяют комбинированные конструктивные системы. В этих системах вертикальные несущие конструкции компонуют, сочетая различные виды несущих элементов – стены и колонны, стены и объемные блоки и др.

В соответствии с функциональными требованиями к объемно-планировочному решению в зданиях могут сочетаться различные структуры пространственных ячеек. Это влечет за собой и сочетание различных конструктивных систем в одном здании, например, бескаркасной для фрагмента здания ячеистой структуры и каркасной – для зальных помещений. Такое решение называется смешанной конструктивной системой здания.

Выбор конструктивной системы при проектировании основан на объемно-планировочных, архитектурно-композиционных и экономических требованиях, в соответствии с которыми определились области рационального применения каждой из конструктивных систем.

Бескаркасная (стеновая) система (рис. 3.1) – основа проектирования жилых домов различной этажности и назначения (квартирные дома, общежития, гостиницы, пансионаты и др.) и для разных инженерно-геологических условий. Выбор этой системы связан с относительной стабильностью объемно-планировочных решений жилых зданий и с ее технико-экономическими преимуществами. Благодаря этому расширяется применение бескаркасной системы и для массовых типов общественных зданий (школ, детских дошкольных учреждений, поликлиник и др.).

       
 
   
Рис. 3.1. Бескаркасная (стеновая) конструктивная система 1 – наружная несущая стена; 2 – внутренняя несущая стена; 3 – сборный настил перекрытия  
 

 

 


Каркасная система (см. рис. 3.2) наиболее часто применяется при проектировании массовых и уникальных общественных зданий различного назначения и этажности. Эта система уступает бескаркасной системе по показателям затрат труда и срокам возведения. Однако предпочтение, оказываемое каркасным системам, связано с функциональными требованиями к гибкости объемно-планировочных решений общественных зданий и необходимости их неоднократной перепланировки в процессе эксплуатации. С точки зрения этих требований компоновочные преимущества каркасных систем перед бескаркасными очевидны.

 

 
 

 

 


Общий вид каркасных конструктивных систем общественного и промышленного зданий показаны на рис. 3.3.

 

 

 


Объемно-блочная система (см. рис. 3.4) применяется при проектировании жилых зданий различных типов высотой до 16 этажей. Главное преимущество такой конструктивной системы – сокращение затрат труда при постройке зданий.

 


Ствольная система (см. рис. 3.5) обеспечивает свободу планировочных решений, поскольку пространство между стволом жесткости и наружными ограждающими конструкциями остается свободным от промежуточных опор. Относительно высокая жесткость здания позволяет использовать такую систему при проектировании жилых и общественных зданий, как правило, башенного типа с компактной (квадратной, круглой и т.п.) формой плана, высотой более 20 этажей. Возможно применение ствольной системы и для протяженных зданий, но в этих случаях конструктивная система таких зданий компонуется из нескольких стволов.

Наиболее целесообразны компактные в плане многоэтажные здания ствольной системы в сейсмостойком строительстве, а также в условиях неравномерных деформаций основания (на просадочных грунтах, над горными выработками и т.п.).

       
 
   
Рис. 3.5. Ствольная конструктивная система 1 – сборный или монолитный ствол жесткости; 2 – консольные междуэтажные перекрытия
 

 


Оболочковая система присуща уникальным и высотным (более 40 этажей) зданиям, поскольку обеспечивает существенной увеличение жесткости сооружения. Применение такой системы в качестве основной (а также в комбинации с каркасом) обеспечивает свободу планировочных решений, что позволяет применять ее для жилых и общественных зданий. Однако чаще всего такие здания проектируют многофункциональными. Оболочковая конструкция может совмещать несущие и ограждающие функции или дополняться наружными ограждающими конструкциями.

 
 

 

 


Помимо основных типообразующих признаков конструктивной системы, т.е. несущих вертикальных элементов, существуют дополнительные классификационные признаки внутри каждой из систем. Ими служат геометрические признаки – ­­­­­­­­­­­размещение вертикальных несущих конструкций в плане здания и расстояния между ними. Способ размещения несущих горизонтальных и вертикальных конструкций здания в пространстве называют конструктивной схемой.

При бескаркасной (стеновой) конструктивной системе, исходя из основных геометрических признаков, можно выделить следующие виды конструктивных схем (см. рис. 3.7):

- Iпродольно-стеновая;

- IIпоперечно-стеновая:

а) с большим шагом несущих стен (2, 4 ÷ 4, 5 м);

б) с узким шагом несущих стен (6, 0 ÷ 7, 2 м);

в) со смешанным шагом;

- IIIперекрестно-стеновая.

       
 
   
Рис. 3.7. Конструктивные схемы бескаркасных зданий а – продольно-стеновая; б – поперечно-стеновая; в – перекрестно-стеновая  
 
б
а

 


Продольно-стеновая конструктивная схема (см. рис. 3.7 а) традиционна в проектировании зданий малой, средней и повышенной этажности. Редкое расположение поперечных стен-диафрагм жесткости (через 25 – 40 м) обеспечивает свободу планировочных решений в зданиях, поэтому эту схему применяют при проектировании жилых и общественных зданий различного назначения.

Поперечно-стеновая конструктивная схема (см. рис. 3.7 б) менее гибкая в планировочном отношении, чем продольно-стеновая схема. Поэтому наиболее часто ее применяют при строительстве жилых зданий, реже – массовых типов общественных зданий (детских учреждений, школ и т.п.). Поперечно-стеновая схема (особенно с большим шагом поперечных несущих стен) допускает возможность частичной перепланировки внутреннего объема зданий в процессе эксплуатации, а также размещения небольших встроенных нежилых помещений в первых этажах жилых домов.

Перекрестно-стеновой схеме (см. рис. 3.7 в) присущи малые размеры конструктивно-планировочных ячеек (около 20 м2), что ограничивает область ее применения только жилыми зданиями. Частое расположение поперечных стен делает трансформацию планов зданий трудноосуществимой. Разнообразию планировочных решений в проектировании домов на основе этой схемы способствует использование нескольких размеров шагов поперечных стен (например, 3, 0; 3, 6 и 4, 2 м) в различных сочетаниях. Благодаря высокой пространственной жесткости перекрестно-стеновая схема широко распространена в проектировании многоэтажных зданий, а также зданий, строящихся в сложных геологических условиях, а также в сейсмически опасных районах.

В каркасных зданияхприменяют четыре конструктивные схемы:

- Iс поперечным расположением ригелей;

- IIс продольным расположением ригелей;

- IIIс перекрестным расположением ригелей;

- IV безригельная.

Использование современных массовых типовых конструкций перекрытий определяет размеры основной конструктивно-планировочной сетки осей каркаса 6 ´ 6 м (при дополнительной сетке 6 ´ 3 м).

При выборе конструктивной схемы каркаса учитывают как экономические, так и архитектурно-планировочные требования:

- элементы каркаса (колонны, ригели, диафрагмы жесткости) не должны ограничивать свободу выбора планировочного решения;

- ригели каркаса не должны выступать из поверхности потолка в жилых комнатах, а проходить по их границам.

Каркас с поперечным расположением ригелей (см. рис. 3.8) целесообразен в зданиях с регулярной планировочной структурой (общежития, гостиницы), где шаг поперечных перегородок совмещается с шагом несущих конструкций.

 

 
 
Рис. 3.8. Конструктивная схема каркасного здания с поперечным расположением ригелей  

 

 


Каркас с продольным расположением ригелей (см. рис. 3.9) используют в проектировании жилых домов квартирного типа и массовых общественных зданий сложной планировочной структуры, например, в зданиях школ.

       
 
   
Рис. 3.9. Конструктивная схема каркасного здания с продольным расположением ригелей  
 

 


Каркас с перекрестным расположением ригелей выполняют чаще всего монолитным и используют в многоэтажных промышленных и общественных зданиях.

Безригельный каркас используют как в многоэтажных промышленных, так и в гражданских зданиях, т.к. в связи с отсутствием ригелей эта схема в архитектурно-планировочном отношении наиболее целесообразна.

 

 

 


В данном случае ригели отсутствуют, а сборный или монолитный диск перекрытия опирается или на капители (уширения) колонн, или непосредственно на колонны (см. рис. 3.10).

В комбинированных конструктивных системах может применяться различное сочетание вертикальных несущих конструкций, которые используются в основных конструктивных системах. На практике наиболее распространены следующие виды конструктивных схем в зданиях с комбинированными системами:

1) Неполный каркас (см. рис. 3.11). Такую схему выбирают исходя из местных сырьевых и производственных условий применения массивных конструкций наружных стен.

       
 
   
Рис. 3.11. Конструктивная схема здания с неполным каркасом (план) а – плиты перекрытия опираются на ригели каркаса и на наружную несущую стену; б – ригели каркаса опираются на колонны и на наружную несущую стену 1 – колонны каркаса; 2 – ригели; 3 – сборный настил перекрытия; 4 – несущая стена  
 

 


2) Схема, в которой каркас расположен в пределах первого этажа (или нескольких этажей), а выше здание имеет стеновую конструктивную систему (см. рис. 3.12).

 
 


Поделиться:



Популярное:

  1. I. Основания и фундаменты зданий и сооружений
  2. I. ПРИЕМЫ ИЗМЕРЕНИЙ И СТАТИСТИЧЕСКИЕ СПОСОБЫ ОБРАБОТКИ ИХ РЕЗУЛЬТАТОВ В ПСИХОЛОГИЧЕСКОМ ИССЛЕДОВАНИИ
  3. I.4.7. ЗАКОНЫ И ПРИЁМЫ КИНОПОВЕСТВОВАНИЯ
  4. II.1. Приемы изложения научных материалов
  5. VI. ПРИЕМЫ ОБУЧЕНИЯ, РЕАЛИЗУЮЩИЕ ОБЩЕДИДАКТИЧЕСКИЕ МЕТОДЫ ОБУЧЕНИЯ
  6. Автоматизация поддержки решений
  7. В главу 8 «Временные здания и сооружения» включаются средства на строительство временных зданий и сооружений.
  8. В еще большей степени заинтересованы в лоббизме профессиональные чиновники, от деятельности которых зависит не только принятие, но и претворение в жизнь политических решений.
  9. Виды поддержки проектных решений
  10. Возведение зданий и сооружений в зимних условиях
  11. ВОПРОС 20 Понятие «управленческое решение» Классификая Управленческих решений
  12. Вопрос 4. Психологические приемы влияния на собеседника в деловом общении. Психологическое влияние на партнера


Последнее изменение этой страницы: 2017-03-03; Просмотров: 1309; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.039 с.)
Главная | Случайная страница | Обратная связь