Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Основные характеристики звука



1. Акустикой называется учение о звуке. Причиной звуковых ощущений людей и животных является воздействие на их органы слуха упругих волн, распространяющихся в воздухе или другой упругой среде под влиянием механических колебаний какого-либо тела (источника звука). Это подтверждается следующим опытом.

Поместим электрический звонок в замкнутый стеклянный сосуд и откачаем из него воздух. По мере уменьшения плотности воздуха в сосуде звучание звонка ослабевает, а при достаточно сильном разрежении мы видим колебания молоточка звонка и совершенно не слышим его звука.

Изменяя частоту колебаний источника звука, можно убедиться в том, что человек с нормальным слухом способен воспринимать как звук только такие упругие волны, частоты которых не меньше 16 Гц и не больше 20 000 Гц. Кроме того, оказывается, что чувствительность нашего уха к волнам различной частоты неодинакова — она максимальна для волн с частотами порядка 1, 5—3 кГц. Эти закономерности обусловлены особенностями строения наших органов слуха и ни в какой мере не свидетельствуют о каком-либо принципиальном отличии «слышимых» упругих волн от «неслышимых». По своей природе и физическим свойствам и те и другие волны ничем качественно не отличаются друг от друга. В этом можно убедиться по их действию на микрофоны, пьезоэлектрические приборы, регистрирующие колебания давления (см. т.II, § 6.5) и другие измерительные устройства.

Кроме того, установлено, что верхний и нижний пределы частот слышимых упругих волн у различных животных неодинаковы. Так, например, у собак ν макс достигает 38 кГц, а у летучих мышей и китов — превосходит 100 кГц. Поэтому звуком в физике называют любые упругие волны, причем в отличие от слышимых волны с частотами, меньшими 16 Гц, называют инфразвуковыми, а волны с частотами, большими 20 кГц, — ультразвуковыми. Ультразвуковые волны с частотами порядка 109 Гц и выше иногда называют гиперзвуковыми. Верхняя граница частот ультразвуковых волн (в кристаллах порядка 1012—1013 Гц) соответствует частотам, при которых длина этих волн становится соизмеримой с межмолекулярными расстояниями.

Термин «звук» применяется также для обозначения того ощущения, которое производит звуковая волна на наши органы слуха. Таким образом, рассматривая любое акустическое явление, нужно помнить, что, с одной стороны, звук — это физический процесс распространения упругих волн в среде, а с другой — психофизиологический процесс, обусловленный указанным выше физическим процессом. Первый круг вопросов является предметом исследования физической акустики, а второй — физиологической акустики.

Физическая акустика по существу является учением об упругих волнах. Для характеристики звука в акустике используются частота ν звуковой волны (или спектр частот ν в случае сложной несинусоидальной звуковой волны) и интенсивность звука. В Международной системе единиц (СИ) интенсивность звука выражается в ваттах на квадратный метр (Вт/м2) (Детлаф А.А., Яворский Б.М. Курс физики (в трех томах): учебное пособие. М.: Высшая школа, 1979. – Т.3: Волновые процессы. Оптика. Атомная и ядерная физика. – С.33-34).

Задание 15. Составьте аннотацию к научной статье.

Природа шаровой молнии (Власов А. Природа шаровой молнии // НиТ, №6(73), 2012 г. )

Природа обычной, линейной, молнии давно установлена — это газовый разряд в виде грандиозной искры, «проскакивающей» между сильно заряженными грозовыми облаками или облаком и землей. Поскольку появление шаровой молнии связано с линейной, естественно предположить, что природа их сходна. Поэтому рассмотрим вкратце основные группы газовых разрядов.

Сильное электрическое или переменное электромагнитное поле ионизует атомы и молекулы газа — возникает плазма и происходит электрический разряд. Газовые разряды можно условно разбить на две основные группы по признаку: замыкаются силовые линии электрического поля в плазме или нет, иначе говоря — вихревое электрическое поле или потенциальное.

Если напряжение подают на электроды (рис. 1а), силовые линии электрического поля Е замыкаются на них, а не в плазме. Пара электродов ведет себя как конденсатор, поэтому такие разряды называют емкостными или Е-типа. Электрическое поле может быть постоянным, переменным или импульсным.

(рис.1)

К другой категории относятся безэлектродные индукционные разряды

Н-типа, при возбуждении которых определяющую роль играет электромагнитная индукция (рис. 1). Через катушку-индуктор пропускают ток высокой частоты или импульсный ток I, создающий магнитное поле Н. Под действием переменного магнитного потока внутри катушки возникает вихревое электрическое поле Е. Его силовые линии представляют собой замкнутые окружности, концентрические с витками катушки. Это электрическое поле может зажигать и поддерживать разряд, причем токи также замкнуты и протекают вдоль линий поля (рис. 2).

Если полагать, что обе молнии — и линейная, и шаровая — это газовые разряды, то линейную следует отнести к категории разрядов Е-типа, поскольку имеются электроды, например облако и земля. Шаровую молнию естественно отнести к категории индукционных разрядов Н-типа. Попытаемся обосновать данное предположение и найти конкретную структуру шаровой молнии.

Накопленный материал наблюдений позволяет установить несколько присущих шаровой молнии особенностей:

• она может производить электромагнитные воздействия, особенно сильные при ее гибели со взрывом, и выводить из строя электроприборы;

• время ее жизни — от десятых долей секунды до нескольких минут;

• шаровая молния может существовать в закрытых помещениях, в том числе и с электромагнитной экранировкой, например в железобетонных строениях;

• ее внутренняя температура достигает нескольких тысяч градусов (судя по спектру светового излучения), но внешняя поверхность имеет, как правило, низкую температуру (по данным очевидцев, которых она касалась).

Подводя итоги, приходим к заключению, что основой шаровой молнии должен служить индукционный разряд внутри вихревого кольца (рис. 3).

Задание 19. Напишите аннотацию к статье.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-11; Просмотров: 1153; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.012 с.)
Главная | Случайная страница | Обратная связь