Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Характеристика задач системного анализа
Системный анализ в настоящее время вынесен на самое остриё научных исследований. Он призван дать научный аппарат для анализа и изучения сложных систем. Лидирующая роль системного анализа обусловлена тем, что развитие науки привело к постановке тех задач, которые призван решать системный анализ. Особенность текущего этапа состоит в том, что системный анализ, ещё не успев сформироваться в полноценную научную дисциплину, вынужден существовать и развиваться в условиях, когда общество начинает ощущать потребность в применении ещё недостаточно разработанных и апробированных методов и результатов и не в состоянии отложить решение связанных с ними задач на завтра. В этом источник как силы, так и слабости системного анализа: силы – потому, что он постоянно ощущает воздействие потребности практики, вынужден непрерывно расширять круг объектов исследования и не имеет возможности абстрагироваться от реальных потребностей общества; слабости – потому, что нередко применение «сырых», недостаточно проработанных методов системных исследований ведёт к принятию скороспелых решений, пренебрежению реальными трудностями. Рассмотрим основные задачи, на решение которых направлены усилия специалистов и которые нуждаются в дальнейшей разработке. Во-первых, следует отметить задачи исследования системы взаимодействий анализируемых объектов с окружающей средой. Решение данной задачи предполагает: – проведение границы между исследуемой системой и окружающей средой, предопределяющей предельную глубину влияния рассматриваемых взаимодействий, которыми ограничивается рассмотрение; – определение реальных ресурсов такого взаимодействия; – рассмотрение взаимодействий исследуемой системы с системой более высокого уровня. Задачи следующего типа связаны с конструированием альтернатив этого взаимодействия, альтернатив развития системы во времени и в пространстве. Важное направление развития методов системного анализа связано с попытками создания новых возможностей конструирования оригинальных альтернатив решения, неожиданных стратегий, непривычных представлений и скрытых структур. Другими словами, речь здесь идёт о разработке методов и средств усиления индуктивных возможностей человеческого мышления в отличие от его дедуктивных возможностей, на усиление которых, по сути дела, направлена разработка формальных логических средств. Исследования в этом направлении начаты лишь совсем недавно, и единый концептуальный аппарат в них пока отсутствует. Тем не менее, и здесь можно выделить несколько важных направлений – таких, как разработка формального аппарата индуктивной логики, методов морфологического анализа и других структурно-синтаксических методов конструирования новых альтернатив, методов синтектики и организации группового взаимодействия при решении творческих задач, а также изучение основных парадигм поискового мышления. Задачи третьего типа заключаются в конструировании множества имитационных моделей, описывающих влияние того или иного взаимодействия на поведение объекта исследования. Отметим, что в системных исследованиях не преследуется цель создания некоей супермодели. Речь идёт о разработке частных моделей, каждая из которых решает свои специфические вопросы. Даже после того как подобные имитационные модели созданы и исследованы, вопрос о сведении различных аспектов поведения системы в некую единую схему остается открытым. Однако решить его можно и нужно не посредством построения супермодели, а анализируя реакции на наблюдаемое поведение других взаимодействующих объектов, т.е. путём исследования поведения объектов – аналогов и перенесения результатов этих исследований на объект системного анализа. Такое исследование даёт основание для содержательного понимания ситуаций взаимодействия и структуры взаимосвязей, определяющих место исследуемой системы в структуре суперсистемы, компонентом которой она является. Задачи четвёртого типа связаны с конструированием моделей принятия решений. Всякое системное исследование связано с исследованием различных альтернатив развития системы. Задача системных аналитиков – выбрать и обосновать наилучшую альтернативу развития. На этапе выработки и принятия решений необходимо учитывать взаимодействие системы с её подсистемами, сочетать цели системы с целями подсистем, выделять глобальные и второстепенные цели. Наиболее развитая и в то же время наиболее специфическая область научного творчества связана с развитием теории принятия решений и формированием целевых структур, программ и планов. Здесь не ощущается недостатка и в работах, и в активно работающих исследователях. Однако и в данном случае слишком многие результаты находятся на уровне неподтверждённого изобретательства и разночтений в понимании, как существа стоящих задач, так и средств их решения. Исследования в этой области включают: а) построение теории оценки эффективности принятых решений или сформированных планов и программ; б) решение проблемы многокритериальности в оценках альтернатив решения или планирования; в) исследования проблемы неопределённости, особенно связанной не с факторами статистического характера, а с неопределённостью экспертных суждений и преднамеренно создаваемой неопределённостью, связанной с упрощением представлений о поведении системы; г) разработка проблемы агрегирования индивидуальных предпочтений на решениях, затрагивающих интересы нескольких сторон, которые влияют на поведение системы; д) изучение специфических особенностей социально-экономических критериев эффективности; е) создание методов проверки логической согласованности целевых структур и планов и установления необходимого баланса между предопределённостью программы действий и её подготовленностью к перестройке при поступлении новой информации как о внешних событиях, так и изменении представлений о выполнении этой программы. Для последнего направления требуется новое осознание реальных функций целевых структур, планов, программ и определение тех, которые они должны выполнять, а также связей между ними. Рассмотренные задачи системного анализа не охватывают полного перечня задач. Здесь перечислены те, которые представляют наибольшую сложность при их решении. Следует отметить, что все задачи системных исследований тесно взаимосвязаны друг с другом, не могут быть изолированы и решаться отдельно как по времени, так и по составу исполнителей. Более того, чтобы решать все эти задачи, исследователь должен обладать широким кругозором и владеть богатым арсеналом методов и средств научного исследования. Особенности задач СА Конечной целью системного анализа является разрешение проблемной ситуации, возникшей перед объектом проводимого системного исследования (обычно это конкретная организация, коллектив, предприятие, отдельный регион, социальная структура и т.п.). Системный анализ занимается изучением проблемной ситуации, выяснением её причин, выработкой вариантов её устранения, принятием решения и организацией дальнейшего функционирования системы, разрешающего проблемную ситуацию. Начальным этапом любого системного исследования является изучение объекта проводимого системного анализа с последующей его формализацией. На этом этапе возникают задачи, в корне отличающие методологию системных исследований от методологии других дисциплин, а именно, в системном анализе решается двуединая задача. С одной стороны, необходимо формализовать объект системного исследования, с другой стороны, формализации подлежит процесс исследования системы, процесс постановки и решения проблемы. Приведём пример из теории проектирования систем. Современная теория автоматизированного проектирования сложных систем может рассматриваться как одна из частей системных исследований. Согласно ей проблема проектирования сложных систем имеет два аспекта. Во-первых, требуется осуществить формализованное описание объекта проектирования. Причём на этом этапе решаются задачи формализованного описания как статической составляющей системы (в основном формализации подлежит её структурная организация), так и её поведение во времени (динамические аспекты, которые отражают её функционирование). Во-вторых, требуется формализовать процесс проектирования. Составными частями процесса проектирования являются методы формирования различных проектных решений, методы их инженерного анализа и методы принятия решений по выбору наилучших вариантов реализации системы. Важное место в процедурах системного анализа занимает проблема принятия решения. В качестве особенности задач, встающих перед системными аналитиками, необходимо отметить требование оптимальности принимаемых решений. В настоящее время приходится решать задачи оптимального управления сложными системами, оптимального проектирования систем, включающих в себя большое количество элементов и подсистем. Развитие техники достигло такого уровня, при котором создание просто работоспособной конструкции само по себе уже не всегда удовлетворяет ведущие отрасли промышленности. Необходимо в ходе проектирования обеспечить наилучшие показатели по ряду характеристик новых изделий, например, добиться максимального быстродействия, минимальных габаритов, стоимости и т.п. при сохранении всех остальных требований в заданных пределах. Таким образом, практика предъявляет требования разработки не просто работоспособного изделия, объекта, системы, а создания оптимального проекта. Аналогичные рассуждения справедливы и для других видов деятельности. При организации функционирования предприятия формулируются требования по максимизации эффективности его деятельности, надёжности работы оборудования, оптимизации стратегий обслуживания систем, распределения ресурсов и т.п. В различных областях практической деятельности (технике, экономике, социальных науках, психологии) возникают ситуации, когда требуется принимать решения, для которых не удаётся полностью учесть предопределяющие их условия. Принятие решения в таком случае будет происходить в условиях неопределённости, которая имеет различную природу. Один из простейших видов неопределённости – неопределённость исходной информации, проявляющаяся в различных аспектах. В первую очередь, отметим такой аспект, как воздействие на систему неизвестных факторов. Неопределённость, обусловленная неизвестными факторами, также бывает разных видов. Наиболее простой вид такого рода неопределённости – стохастическая неопределённость. Она имеет место в тех случаях, когда неизвестные факторы представляют собой случайные величины или случайные функции, статистические характеристики которых могут быть определены на основании анализа прошлого опыта функционирования объекта системных исследований. Следующий вид неопределённости – неопределённость целей. Формулирование цели при решении задач системного анализа является одной из ключевых процедур, потому что цель является объектом, определяющим постановку задачи системных исследований. Неопределённость цели является следствием из многокритериальности задач системного анализа. Назначение цели, выбор критерия, формализация цели почти всегда представляют собой трудную проблему. Задачи со многими критериями характерны для крупных технических, хозяйственных, экономических проектов. И, наконец, следует отметить такой вид неопределённости, как неопределённость, связанная с последующим влиянием результатов принятого решения на проблемную ситуацию. Дело в том, что решение, принимаемое в настоящий момент и реализуемое в некоторой системе, призвано повлиять на функционирование системы. Собственно для того оно и принимается, так как по идее системных аналитиков данное решение должно разрешить проблемную ситуацию. Однако поскольку решение принимается для сложной системы, то развитие системы во времени может иметь множество стратегий. И, конечно же, на этапе формирования решения и принятия управляющего воздействия аналитики могут не представлять себе полной картины развития ситуации. При принятии решения существуют различные рекомендации прогнозирования развития системы во времени. Один из таких подходов рекомендует прогнозировать некоторую «среднюю» динамику развития системы и принимать решения исходя из такой стратегии. Другой подход рекомендует при принятии решения исходить из возможности реализации самой неблагоприятной ситуации. В качестве следующей особенности системного анализа отметим роль моделей как средства изучения систем, являющихся объектом системных исследований. Любые методы системного анализа опираются на математическое описание тех или иных фактов, явлений, процессов. Употребляя слово «модель», всегда имеют в виду некоторое описание, отражающее именно те особенности изучаемого процесса, которые и интересуют исследователя. Точность, качество описания определяются, прежде всего, соответствием модели тем требованиям, которые предъявляются к исследованию, соответствием получаемых с помощью модели результатов наблюдаемому ходу процесса. Если при разработке модели используется язык математики, говорят о математических моделях. Построение математической модели является основой всего системного анализа. Это центральный этап исследования или проектирования любой системы. От качества модели зависит успешность всего последующего анализа. Однако в системном анализе наряду с формализованными процедурами большое место занимают неформальные, эвристические методы исследования. Этому есть ряд причин. Первая состоит в следующем. При построении моделей систем может иметь место отсутствие или недостаток исходной информации для определения параметров модели. В этом случае проводится экспертный опрос специалистов с целью устранения неопределённости или, по крайней мере, её уменьшения, т.е. опыт и знания специалистов могут быть использованы для назначения исходных параметров модели. Ещё одна причина применения эвристических методов состоит в следующем. Попытки формализовать процессы, протекающие в исследуемых системах, всегда связаны с формулированием определённых ограничений и упрощений. Здесь важно не перейти ту грань, за которой дальнейшее упрощение приведёт к потере сути описываемых явлений. Иными словами – реализация выбора и принятие решений; – внедрение результатов анализа.
Популярное:
|
Последнее изменение этой страницы: 2017-03-11; Просмотров: 908; Нарушение авторского права страницы