Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Определение первообразной и неопределенного интеграла



Функция F(x) называется первообразной функции f(x), если

Множество всех первообразных некоторой функции f(x) называется неопределенным интегралом функцииf(x) и обозначается как

Таким образом, если F - некоторая частная первообразная, то справедливо выражение

где С - произвольная постоянная.

Свойства неопределенного интеграла

В приведенных ниже формулах f и g - функции переменной x, F - первообразная функции f,
а, k, C - постоянные величины.

57) Формула Ньютона-Лейбница - даёт соотношение между операциями взятия определенного интеграла и вычисления первообразной. Формула Ньютона-Лейбница - основная формула интегрального исчисления.

Данная формула верна для любой функции f(x), непрерывной на отрезке [а, b], F - первообразная для f(x). Таким образом, для вычисления определенного интеграла нужно найти какую-либо первообразную F функции f(x) , вычислить ее значения в точках a и b и найти разность F(b) – F(a). Если после изучения данного теоретического материала (Формула Ньютона-Лейбница) у Вас возникли проблемы при решении задач на данную тему или появились вопросы образовательного характера, то Вы всегда можете задать их на нашем форуме.

58 ) Определение: Перестановка n-элементного множества М есть упорядоченный набор длины n, составленный из попарно различных элементов множества М. Обозначим через множество всех перестановок из n элементов и через Рn число всех перестановок из n элементов. Например, если M = {а, b, с}, то РM = {(а, b, с), (а, с, b), (b, а, с). (b, с.а), (с, а, b), (с, b, а)}; Рn =3! = 6.

Определение: Сочетание из n элементов по r элементов в каждом сочетании есть r-элементное подмножество в n-элементном множестве М. Обозначим через множество всех сочетаний из n элементов по r и через Crn число всех сочетаний из n элементов по r. Например, если M = {а, b.с}, то С1M = {(а), (b), (с)}; C2M = {(а, b), (а, с), (b, с)}; С13 = |С1M | = 3; С23=|С2M|= 3. Определение: Размещение из n элементов по r есть упорядоченный набор, состоящий из r различных элементов, взятых из n-элементного множества M.

 

 

Основные понятия теории вероятностей и математической статистики.

Вероятность - числовая характеристика степени возможности появления случайного события в определённых условиях, которые могут быть воспроизведены неограниченное количество раз.

Событие. Первичным (неопределяемым) понятием в теории вероятностей является понятие события. Под событием понимается всякое явление, о котором можно говорить, что оно происходит (имеет место) или не происходит.

Событиями являются и результаты различных опытов, наблюдений и измерений.

Например:

1) из ящика с разноцветными шарами наугад вытаскивают белый шар;

2) на один из приобретенных лотерейных билетов выпал выигрыш;

3) при бросании игральной кости выпала цифра 6.

События делятся на достоверные, случайные и невозможные.

Достоверным называется событие, если оно обязательно произойдет в данном испытании.

Случайным называется событие, если оно может произойти, но может и не произойти в данном испытании.

Невозможным называется событие, если оно не может произойти в данном испытании.

Наступление каждого события зависит от многих факторов, заранее учесть которые обычно невозможно. Однако в случае совокупности однородных (массовых) событий можно обнаружить закономерности, позволяющие предсказать, насколько достоверно наступление того или иного события, т.е. насколько это событие вероятно.

За единицу принимают вероятность достоверного события, а вероятность невозможного события считают равной нулю. Тогда вероятность Р любого события А удовлетворяет неравенству:

0≤ Р(А)≤ 1. Несовместными называются события, если появление одного из нихисключает появление другого (всех остальных)

Пример. Опыт состоит в подбрасывании монеты, событие А – выпадение орла, событие В – выпадение решки. Эти события несовместны, равновозможны и единственно возможны.

Равновозможными называются события, если ни одно из них не является более возможным, чем другое.

Единственно возможными называются события, если в результате опыта хотя бы одно из них обязательно наступит. Говорят, что единственно возможные события образуют полную группусобытий.

Рассмотрим классический метод определения вероятности некоторого случайного события. Пусть в результате некоторого опыта могут наступить события А1, А2, А3, …, Аn (элементарные исходы опыта), которые являются:

1)единственно возможными, т.е. в результате опыта хотя бы одно из них обязательно наступит;

2)несовместными, т.е. появление одного из них исключает появление всех остальных;

3)равновозможными, т.е. не существует никаких причин, в связи с которыми одно из событий появлялось бы чаще, чем остальные.

Пусть при появлении некоторых из этих событий наступает событие А. Обозначим число таких событий k (k≤ n). А при появлении остальных (n-k) событий событие А не наступает. Говорят, что kсобытий (элементарных исходов), при которых появляется событие А, благоприятствуют событию А, а остальные (n-k) событий не благоприятствуют ему.

Вероятностью события А называется отношение числа k элементарных исходов, благоприятствующих этому событию, к общему числу элементарных исходов испытания n, если они равновозможны, несовместны и единственно возможны



60) Теорема сложения вероятностей несовместных событий Суммой А + В двух событий А и В называют событие, состоящее в появлении события А, или события В, или обоих этих событий. Например, если из орудия произведены два выстрела и А — попадание при первом выстреле, В — попадание при втором выстреле, то А + В — попадание при первом выстреле, или при втором, или в обоих выстрелах.

В частности, если два события А и B — несовместные, то А + В — событие, состоящее в появлении одного из этих событий, безразлично какого.

Суммой нескольких событий называют событие, которое состоит в появлении хотя бы одного из этих событий. Например, событие А + В + С состоит в появлении одного из следующих событий: А, В, С, А и В, А и С, В и С, А и В и С.

Пусть события A и В — несовместные, причем вероятности этих событий известны. Как найти вероятность того, что наступит либо событие A, либо событие В? Ответ на этот вопрос дает теорема сложения.

Теорема. Вероятность появления одного из двух несовместных событий, безразлично какого, равна сумме вероятностей этих событий: Р (А + В) = Р (А) + Р (В).

Доказательство

С л е д с т в и е. Вероятность появления одного из нескольких попарно несовместных событий, безразлично какого, равна сумме вероятностей этих событий: Р (A1 + A2 +... + An) = Р (A1) + Р (A2) +... + Р (An).


Поделиться:



Последнее изменение этой страницы: 2017-03-15; Просмотров: 267; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.019 с.)
Главная | Случайная страница | Обратная связь