Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Типичные законы распределения и числовые характеристики случайных величин.



1. Равномерное распределение
Так называют распределение случайной величины, которая может принимать любые значения в интервале (a, b), причем вероятность попадания ее в любой отрезок внутри (a, b) пропорциональна длине отрезка и не зависит от его положения, а вероятность значений вне (a, b) равна 0.

Параметры распределения: a, b

2. Нормальное распределение
Распределение с плотностью, описываемой формулой

(6.1)

называется нормальным. (Рисунок 6.2)
Параметры распределения: a, σ

3. Распределение Бернулли
Если производится серия независимых испытаний, в каждом из который событие А может появиться с одинаковой вероятностью р, то число появлений события есть случайная величина, распределенная по закону Бернулли, или по биномиальному закону (другое название распределения).

(6.2)

Здесь n - число испытаний в серии, m - случайная величина (число появлений события А), Рn(m) - вероятность того, что А произойдет именно m раз, q = 1 - р (вероятность того, что А не появится в испытании).

Пример 1: Кость бросают 5 раз, какова вероятность того, что 6 очков выпадет дважды?
n = 5, m = 2, p = 1/6, q = 5/6

Параметры распределения: n, р

4. Распределение Пуассона
Распределение Пуассона получается как предельный случай распределения Бернулли, если устремить р к нулю, а n к бесконечности, но так, чтобы их произведение оставалось постоянным: nр = а. Формально такой предельный переход приводит к формуле (6.3)

Параметр распределения: a

Распределению Пуассона подчиняются очень многие случайные величины, встречающиеся в науке и практической жизни.

Пример 2: число вызовов, поступающих на станцию скорой помощи в течение

часа.
Разобьем интервал времени Т (1 час) на малые интервалы dt, такие что вероятность поступления двух и более вызовов в течение dt пренебрежимо мала, а вероятность одного вызова р пропорциональна dt: р = μ dt;
будем рассматривать наблюдение в течение моментов dt как независимые испытания, число таких испытаний за время Т: n = T / dt;
если предполагать, что вероятности поступления вызовов не меняются в течение часа, то полное число вызовов подчиняется закону Бернулли с параметрами: n = T / dt, р = μ dt. Устремив dt к нулю, получим, что n стремится к бесконечности, а произведение n× р остается постоянным: а = n× р = μ Т.

Пример 3: число молекул идеального газа в некотором фиксированном объеме V.
Разобьем объем V на малые объемы dV такие, что вероятность нахождения двух и более молекул в dV пренебрежимо мала, а вероятность нахождения одной молекулы пропорциональна dV: р = μ dV; будем рассматривать наблюдение каждого объемчика dV как независимое испытание, число таких испытаний n=V/dV; если предполагать, что вероятности нахождения молекулы в любом месте внутри V одинаковы, полное число молекул в объеме V подчиняется закону Бернулли с параметрами: n = V / dV, р = μ dV. Устремив dV к нулю, получим, что n стремится к бесконечности, а произведение n× р остается постоянным: а = n× р =μ V.

 

 


69) Функция распределения вероятностей случайной величины и ее свойства.
Рассмотрим функцию F(х), определенную на всей числовой оси следующим образом: для каждого х значение F(х) равно вероятности того, что дискретная случайная величина примет значение, меньшее х, т. е.

   

Эта функция называется функцией распределения вероятностей, или кратко, функцией распределения.

70) Плотностью распределения (или плотностью вероятности) непрерывной случайной величины X в точке x называется производная ее функции распределения в этой точке и обозначается f(x). График плотности распределения называется кривой распределения.

71) Основные задачи математической статистики

1. Определение на основе данных опыта (неизвестного) закона распределения случайной величины.

2. Определение по данным опыта неизвестных параметров распределения.

3. Проверка статистических гипотез.

Эффективность и надежность расчетов с использованием теории вероятностей определяется исходным экспериментальным материалом и, следовательно, не в последнюю очередь его организацией, то есть методами сбора и представления данных.

Например, для изучения геофизических явлений составляется междуна-родный геофизический график-календарь, который так регламентирует периоды наблюдения и их продолжительность, чтобы при минимальных экономических затратах в результатах наблюдений содержалась бы информация как о быстрых, так и медленных изменениях, например, в структуре атмосферы.

При контроле выпускаемых в больших количествах элементов электроники регламентируется порядок выбора и количество испытуемых экземпляров.

72) Полигоном частот называют ломанную, отрезки которой соединяют точки (x1; n1), (x2; n2), ..., (xk; nk). Для построения полигона частот на оси абсцисс откладывают варианты xi, а на оси ординат - соответствующие им частоты ni. Точки ( xi; ni) соединяют отрезками прямых и получают полигон частот (Рис. 1).

Полигоном относительных частот называют ломанную, отрезки которой соединяют точки (x1; W1), (x2; W2), ..., (xk; Wk). Для построения полигона относительных частот на оси абсцисс откладывают варианты xi, а на оси ординат - соответствующие им относительные частоты Wi. Точки ( xi; Wi) соединяют отрезками прямых и получают полигон относительных частот.

В случае непрерывного признака целесообразно строить гистограмму.

Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиной h, а высоты равны отношению ni / h (плотность частоты).

Для построения гистограммы частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии ni / h.

Площадь i - го частичного прямоугольника равна hni / h = ni - сумме частот вариант i - го интервала; следовательно, площадь гистограммы частот равна сумме всех частот, т.е. объему выборки.

Гистограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиной h, а высоты равны отношениюWi / h (плотность относительной частоты).

73)То́ чечная оце́ нка в математической статистике — это число, вычисляемое на основе наблюдений, предположительно близкое к оцениваемому параметру.

Оценка называется несмещённой, если её математическое ожидание равно оцениваемому параметру генеральной совокупности:

,

где обозначает математическое ожидание в предположении, что — истинное значение параметра (распределения выборки ).

· Оценка называется эффективной, если она обладает минимальной дисперсией среди всех возможных несмещенных точечных оценок.

· Оценка называется состоятельной, если она по вероятности с увеличением объема выборки n стремится к параметру генеральной совокупности: ,

по вероятности при .

· Оценка называется сильно состоятельной, если ,

почти наверное при .

Надо отметить, что проверить на опыте сходимость «почти наверное» не представляется возможным, поэтому с точки зрения прикладной статистики имеет смысл говорить только о сходимости по вероятности.


Поделиться:



Последнее изменение этой страницы: 2017-03-15; Просмотров: 359; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь