Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Получение водорастворимых витаминов



Получение витамина В2 (рибофлавин). Вначале этот витамин выделяли из природного сырья (в максимальных концентрациях он присутствует в моркови и в печени). Затем был разработан как химический, так и микробиологический способы промышленного синтеза. Для рибофлавина характерно функционирование в коэнзимных формах:

-флавиномононуклеотид (ФМН)

-флавинадениндинуклеотид (ФАД).

К источникам рибофлавина относятся:

-высшие растения

-дрожжи

-мицелиальные грибы.

Все они способны синтезировать рибофлавин.

Активным продуцентом рибофлавина являются культура дрожжеподобного гриба Eremothecium ashbyii и Ashbya gossipii.

Сверхсинтез рибофлавина можно получить, если действовать на дикие штаммы мутагенами, нарушающими механизм ретроингибирования синтеза витамина В2, флавиновыми нуклеотидами, а также изменением состава культуральной среды.

В состав среды для роста продуцентов рибофлавина входят:

-соевая мука

-кукурузный экстракт

-сахароза

-карбонат кальция

-хлорид натрия

-витамины

-технический жир.

Перед подачей в ферментер среду стерилизуют с помощью антибиотиков и антисептиков во избежание ее инфицирования. По завершении процесса ферментации культуральную жидкость концентрируют, высушивают и смешивают с наполнителями. В 1983 году в институте генетики был сконструирован рекомбинантный штамм продуцента Bacillus subtilis, способный синтезировать в три раза больше по сравнению с Eremothecium ashbyii и этот продуцент более устойчив к экзогенной кантаминации.

Получение витамина В12. Этот витамин был открыт одновременно в США и в Англии. В 1972 г. В Гарвадском университете был осуществлен химический синтез витамина В12, включающий 37 стадий его получения, что лишало возможности организовать промышленное производство этого витамина. С другой стороны это производство было необходимо, так как витамин В12 очень важен в коррекции определенных нарушений в организме человека и животных. Онрегулирует углеводный и липидный обмен, участвует в метаболизме незаменимых аминокислот, пуриновых и пиримидиновых оснований, стимулирует образование гемоглобина, применяется для лечения злокачественной анемии, лучевой болезни, заболеваний печени и в других случаях.

Учитывая важную функцию витамина в организме человека, его мировое производство достигло10 т в год, из которых 6, 5 т расходуют на медицинские нужды, а 3, 5 т – в животноводстве.

Сначала витамин В12 получали исключительно из природного сырья (1 тонна печени – 15 милиграмм витамина).

Единственный способ его получения в настоящее время – это микробиологический синтез в промышленном масштабе. Интересно, что обнаружение витамин В12 как побочного продукта при производстве антибиотиков стимулировало поиск продуцентов этого витамина.

Продуцентом витамина В12 являются пропионовокислые бактерии из рода Propioni bacterium. Применение мутантов и добавление в среду предшественника витамина В12 - 5, 6 диметилбензимидазола (5, 6 ДМБ) резко повышает продуктивность продуцента. Этому способствует также добавление в питательные среды кукурузного и мясного экстракта, соевой муки, рыбной муки. Выращивание пропионовых бактерий производится периодическим методом в анаэробных условиях на среде с кукурузным экстрактом, глюкозой, солями кобальта и сульфатом аммония, рН около 7, 0 поддерживают добавлением NH4OH; продолжительность ферментации – 6 суток. Через 72 часа после начала ферментации вносят предшественники - 5, 6 ДМБ. Длительность ферментации – трое суток.

Цианкобаламин накапливается в клетках бактерий, поэтому операции по выделению витамина заключаются в следующем: сепарирование клеток, экстрагирование водой при рН 4, 5–5, 0 и температуре 85–90 оС в присутствии стабилизатора (0, 25%-й раствор нитрита натрия). Экстракция протекает в течение часа, после чего водный раствор охлаждают, нейтрализуют раствором едкого натра, добавляют коагулянты белка (хлорид железа (III) и сульфат алюминия) с последующим фильтрованием. Фильтрат упаривают и дополнительно очищают, используя методы ионного обмена и хроматографии, после чего проводят кристаллизацию витамина при 3–4оС из водно-ацетонового раствора.

Очищают на ионообменной смоле, кристаллизуют и проводят химическую очистку продукта. Далее следует получение различных лекарственных форм поливитаминных препаратов. Для увеличения производства витамина В12 перспективным является применение генной инженерии при получении гибридных штаммов и использовании методов иммобилизации на полимерах.

 

Все операции по выделению витамина необходимо проводить в затемненных условиях (или при красном свете) из-за высокой светочувствительности витамина В12.

Первоначальная стоимость витамина В12 составляла 12500 долларов/г, в настоящее время она составляет 200 долларов/г, однако, витамин В12 остается самым дорогим органическим соединением в мире.

Витамин В3 (пантотеновая кислота). Способ получения – тонкий органический синтез и микробиологический синтез с использованием иммобилизованных клеток бактерий, актиномицетов (основной метод).

Аскорбиновая кислота. Здесь применяется в основном химический синтез и лишь одна стадия осуществляется биотехнологическим способом с применением уксуснокислых бактерий, проводящих реакцию трансформации d-сорбита в L-сорбозу (рис. 1).

Рис. 1. Промышленное получение L-аскорбиновой кислоты (по Б. Глику, Джю Пастернаку)

 

Для получения сорбозы культуру продуцента Gluconobacter oxydans выращивают в ферментерах периодического действия с мешалкой, барботером, усиленной аэрацией в течение 20-40 часов. Выход сорбозы достигает 98% от начального сорбита. Питательная среда: кукурузный дрожжевой экстракт до 20%. Сорбозу выделяют из культуральной жидкости. Развитие микробиологического метода получило развитие в производстве 2-кето L -гулоновой кислоты – это промежуточный продукт синтеза витамина С.

Продуценты: Corynebacterium, Erwinia herbicola. Однако оптимальные условия культивирования, приемлемые для одного организма не приемлемы для другого, что влечет спонтанное «вымывание» одного из них. В подобных случаях можно культивировать микроорганизмы последовательно, однако такой процесс трудно сделать непрерывным, так как для роста микроорганизма необходимы существенно разные среды.

Наиболее простой способ создания одного микроорганизма, способного превращать D-глюкозу в 2-KLG, состоит в выделение гена 2, 5-DKG-редуктазы Corynebacterium и введение его в Erwinia herbicola (рис.2).

Рис.2. Превращение D-глюкозы в 2-KLG рекомбинантной бактерией Erwinia herbicola. Ферменты, участвующие в этом процессе, обозначены буквой Е и последовательно пронумерованы.


Поделиться:



Последнее изменение этой страницы: 2017-04-12; Просмотров: 447; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.009 с.)
Главная | Случайная страница | Обратная связь