Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Методы культивирования продуцентов антибиотиков
В современных условиях наиболее перспективным методом выращивания микроорганизмов–продуцентов антибиотиков признан метод глубинного культивирования. Метод состоит в том, что микроорганизм развивается в толще жидкой питательной среды, через которую непрерывно подается стерильный воздух, и среда перемешивается. Существует четыре основных модификации глубинного способа выращивания микроорганизмов. 1. Периодическое культивирование. При этом способе весь процесс развития микроорганизмов полностью завершается в одном ферментаторе, после чего ферментатор освобождается от культуральной жидкости, тщательно промывается, стерилизуется и вновь заполняется свежей питательной средой. Среда засевается изучаемым микроорганизмом, и процесс возобновляется. 2. Отъемный метод. Культивирование микроорганизмов осуществляется в ферментаторах с периодическим отбором части объема культуральной жидкости в ферментаторе и доводится свежей питательной средой до исходного уровня. 3. Батарейный способ. Микроорганизмы развиваются в ряду последовательно соединенных ферментаторов. Культуральная жидкость на определенной стадии развития микроорганизма перекачивается из первого ферментатора во второй, затем из второго в третий и т. д. Освобожденный ферментатор немедленно заполняется свежей питательной средой, засеянной микроорганизмом. При этом способе выращивания микроорганизмов емкости используются более рационально. 4. Непрерывное культивирование. В основе метода лежит принцип непрерывного протока питательной среды, что позволяет поддерживать развитие микроорганизма на определенной стадии его роста. Стадия развития микроорганизма определяется тем, что в этот период происходит максимальный биосинтез антибиотика или другого биологически активного соединения. Установлено, что в условиях непрерывного процесса биосинтеза некоторых антибиотиков можно получить хорошие результаты, если процесс вести в две стадии. В первом аппарате батареи поддерживают высокую скорость потока, обеспечивающую большую скорость роста продуцента антибиотика, с тем, чтобы получить высокоактивную биомассу, а во втором аппарате – обеспечивают низкую скорость потока и соответственно небольшую скорость роста. Процесс непрерывного культивирования – перспективное направление современной биотехнологии. Стерилизация питательных сред Для каждого продуцента антибиотика разрабатывается оптимальная питательная среда. Среда должна соответствовать определенным требованиям: а) обеспечивать максимальный выход антибиотика; б) состоять из относительно дешевых компонентов; в) иметь хорошую фильтрующую способность; г) обеспечивать применение наиболее экономичных приемов выделения и очистки антибиотиков. Стерилизация питательных сред в промышленных условиях осуществляется двумя методами: периодическим и непрерывным. Периодический метод стерилизации применяется при использовании небольших объемов среды и состоит в том, что среда нагревается до температуры 120–130оС непосредственно в ферментаторах или в специальных котлах–стерилизаторах, выдерживается при этой температуре в течение 30–60 минут (в зависимости от объема среды и ее состава), после чего охлаждается до 27–30оС. За время, затрачиваемое на нагрев среды до температуры, необходимой для стерилизации, и ее охлаждение, уничтожается значительное число микроорганизмов. Эффект стерилизации и сохранение термолабильных веществ достигаются в том случае, если стерилизацию проводят при более высокой температуре и за более короткое время. Непрерывный метод стерилизации целесообразно применять при использовании больших объемов среды. Приготовленная среда из специального сосуда с помощью насоса подается в стерилизационную колонну, через которую пропускают острый пар (давление пара около 505 Па). Пар подают сверху по внутренней трубе, имеющей щелевидные прорези, благодаря чему он поступает в среду, быстро ее нагревая. Среда в колонну подается снизу и движется по спирали вокруг внутренней трубы. Среда, нагретая в колонне до необходимой для стерилизации температуры (~130 оС), поступает в специальный аппарат, где она выдерживается определенное время при температуре 125–130 оС. Время выдержки зависит от состава среды и длится 5–10 минут. Отсюда стерильная среда поступает в змеевиковый холодильник, охлаждается до 30–35 оС (на выходе) и поступает в ферментатор. Непрерывный метод стерилизации имеет ряд преимуществ: возможность автоматического регулирования процесса, быстрый и равномерный нагрев среды, обеспечение более полной стерильности среды и др. Подготовка посевного материала Подготовка посевного материала – одна из ответственейших операций в цикле биотехнологического способа получения антибиотиков. От количества и качества посевного материала зависит как развитие культуры в ферментаторе, так и биосинтез антибиотика. Продуцент обычно выращивают на богатых по составу натуральных средах, способных обеспечить наивысшую физиологическую активность микроорганизмов. Подготовка посевного материала – процесс многоступенчатый (рис.1).
Рис. 1. Схема многоступенчатого приготовления посевного материала А – выращивание во флаконах, Б – в колбах на качалках: 1 – законсервированный исходный материал; 2 – споровая генерация на косом агаре в пробирке; 3 – II споровая генерация на твердой среде в сосуде; 3а и 3б – I и III генерации на жидкой среде в колбе; 4 – ферментатор предварительного инокулирования; 5 – ферментатор инокулирования; 6 – основной ферментатор
Микроорганизм предварительно выращивают на агаризованной среде в пробирке (1, 2), затем из пробирки делают высев в колбы с жидкой питательной средой и проводят две генерации при глубинном выращивании на качалках в течение двух–трех суток для каждой генерации (3а и 3б). Из второй генерации культуры в колбе делают посев в небольшой (10 л) инокулятор 4, после чего хорошо развившуюся культуру переносят в более крупный инокулятор 5 (100–500 л), откуда и делают посев в основной ферментатор 6. Для посева в основной ферментатор используют от 5 до 10 % посевного материала (инокулята). Развитие продуцента антибиотика в ферментаторах Развитие микроорганизма в ферментаторах проходит при строгом контроле всех его стадий и очень точном выполнении регламента условий развития. Большое внимание уделяют поддержанию заданной температуры культивирования, активной кислотности среды (рН), степени аэрации и скорости работы мешалки. В процессе развития организма осуществляют биологический контроль, учитывают потребление организмом основных питательных компонентов субстрата (источника углерода, азота, фосфора), внимательно следят за образованием антибиотика. В последнее время все чаще биологический контроль проводят с помощью ЭВМ. Условия ферментации. Рис.1. - в среде не должно быть глюкозы (нельзя использовать легко усвояемые источники углеводов), используют трудно усвояемые источники углеводов – например, крахмал. - в качестве источника аммонийного азота используют соевую муку; - должна быть небольшая концентрация фосфора. Любые предшественники для получения антибиотической структуры надо добавлять не в «0» точке ферментации, а на 2-е, 3-и сутки (если продуцент – грибы или актиномицеты), когда антибиотики начинают синтезироваться (это относится, например, и к фенилуксусной кислоте (ФУК) при синтезе пенициллина, которую добавляют на вторые или третьи сутки биосинтеза пенициллина). Предшественники β -лактамных антибиотиков. β -лактамные антибиотики синтезируются из аминокислот L-цистеин, L - валин, L -аминоадипиновая кислота, из которых синтезируется LLD-трипептид (L –валин превращается в D-валин). Из линейного LLD-трипептида образуется лактамное кольцо, затем образуется пятичленное серосодержащее кольцо и т.д. Антибиотики не являются продуктом матричного синтеза. Аминогликозиды синтезируются из глюкозы. Тетрациклины и макролиды синтезируются с помощью ацетилкоэнзима А(Ац-КоА) наподобие жирных кислот (с участием приблизительно 22-х ферментов). Ферменты синтезирующие антибиотики образуют мультиферментные комплексы (за счет водородных связей), в которые «входят» предшественники антибиотика, а «выходит» целая молекула антибиотика (во внешнюю среду). Эти комплексы располагаются по периферии клетки продуцента. Таким образом, антибиотики отделяются от других систем синтеза в клетке, и антибиотик никак не воздействует на свой продуцент (не ингибирует и не активирует другие процессы). К тому же мембраны продуцента непроницаемы для вышедшего продуцента, тем самым создавая условия одностороннего движения антибиотика только во внешнюю среду.
Большое внимание при развитии продуцента в ферментаторах обращают на процесс пеногашения. При продувании воздуха через культуру микроорганизма образуется обильная пена, которая существенно нарушает процесс развития продуцента антибиотика в ферментаторе. Появление большого количества пены обусловлено белковыми веществами, находящимися в среде, и ее высокой вязкостью, что связано с обильным накоплением биомассы. Для борьбы с пеной в ферментаторах используют поверхностноактивные вещества: растительные масла (соевое, подсолнечное), животный жир (лярд, кашалотовый жир), а иногда минеральные масла (вазелиновое, парафиновое), спирты и высшие жирные кислоты. Нередко в качестве пеногасителей используют специально синтезированные вещества (силиконы, диазобутананкарбамил и др.). Многие вещества (масла, жиры, спирты и др.), используемые в качестве пеногасителей, потребляются продуцентами антибиотиков как дополнительные источники углеродного питания. При этом часто наблюдается повышение выхода антибиотика. Однако внесение пеногасителя может снижать скорость растворения кислорода, что, в свою очередь, отрицательно сказывается на развитии микроорганизма и его биосинтетической активности. Иногда используются механические способы пеногашения (отсасывание пены через специальные трубы, разрушение пузырьков пены сильными струями жидкости, пара или газа). Общая схема производства антибиотиков до стадии выделения и химической очистки представлена на рис. 2. Предварительная обработка культуральной жидкости, выделение и |
Последнее изменение этой страницы: 2017-04-12; Просмотров: 313; Нарушение авторского права страницы