Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Определение ошибок выборки. Распространение результатов выборочного наблюдения на всю совокупность



 

Разность между показателями выборочной и генеральной совокупности называется ошибкой выборки. Ошибки выборки подразделяются на ошибки регистрации и ошибки репрезентативности.

Ошибки регистрации возникают из-за неправильных или неточных сведений. Источниками таких ошибок могут быть непонимание существа вопроса, невнимательность регистратора, пропуск или повторный счет некоторых единиц совокупности, описки при заполнении формуляров и т. д. Среди ошибок регистрации выделяются систематические, обусловленные причинами, действующими в каком-то одном направлении и искажающими результаты работы, и случайные, проявляющиеся в различных направлениях, уравновешивающие друг друга и лишь изредка дающие заметный суммарный итог.

Ошибки репрезентативности также могут быть систематическими и случайными. Систематические ошибки репрезентативности возникают из-за неправильного, тенденциозного отбора единиц, при котором нарушается основной принцип научно организованной выборки – принцип случайности. Случайные ошибки репрезентативности означают, что, несмотря на принцип случайности отбора единиц, все же имеются расхождения между характеристиками выборочной и генеральной совокупности. Изучение и измерение случайных ошибок репрезентативности и является основной задачей выборочного метода (табл. 6.3).

Таблица 6.3.

Формулы ошибок простой случайной выборки

 

Виды ошибок

Способ отбора единиц

повторный бесповторный
Средняя ошибка : для средней
Для доли
Предельная ошибка : для средней
Для доли

В статистических исследованиях с помощью формулы предельной ошибки можно решать ряд задач.

1. Определять возможные пределы нахождения характеристики генеральной совокупности на основе данных выборки.

Доверительные интервалы для генеральной:

Доверительные интервалы для генеральной доли :

2. Определять доверительную вероятность, которая означает, что характеристика генеральной совокупности отличается от выборочной на заданную величину.

Доверительная вероятность является функцией от t, где . Доверительная вероятность по величине t определяется по специальной таблице.

3. Определять необходимый объем выборки с помощью допустимой величины ошибки: .

 

Объем выборки

 Определение необходимого объема выборки n основывается на формулах предельных ошибок выборочной доли и выборочной средней. Например, для повторного отбора предельные ошибки равны

отсюда объемы выборок для расчета выборочной доли nw и выборочной средней nx следующие:

Аналогичным образом определяются объемы выборок при различных способах отбора выборочной совокупности. Для серийного отбора определяется число отобранных серий. Формулы расчета приведены в табл.6.4.

 

Таблица 6.4.

Формулы расчета объема выборки

 

Метод отбора выборки

Объем выборки или число серий для определения

выборочной доли выборочной средней
Механический и собственно–случайный повторный отбор
Механический и собственно–случайный бесповторный отбор
Серийный отбор при повторном отборе равновеликих серий
Серийный отбор при бесповторном отборе равновеликих серий
Типический отбор при повторном случайном отборе внутри групп, пропорциональном объему групп
Типический отбор при бесповторном случайном отборе внутри групп, пропорциональном объему групп

где nw, nx – объемы выборок соответственно для определения ошибок выборочной доли и выборочной средней;

rw, rx – число отобранных серий соответственно для определения ошибок выборочной доли и выборочной средней;

 – предельные ошибки соответственно выборочной доли и выборочной средней.

 


Поделиться:



Последнее изменение этой страницы: 2019-06-09; Просмотров: 314; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.008 с.)
Главная | Случайная страница | Обратная связь