Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Государственное санитарно-эпидемиологическое нормирование



Государственное санитарно-эпидемиологическое нормирование

Российской Федерации

 

Гигиена, токсикология, санитария

 

использованиЕ методов количественного определения наноматериалов на предприятиях наноиндустрии

 

 

Методические рекомендации

МР 1.2.2639-10

 

Москва

2010

Использование методов количественного определения наноматериалов на предприятиях наноиндустрии.– М.: Федеральный Центр гигиены и эпидемиологии Роспотребнадзора, 2010. – 79 с.

 

1. Авторский коллектив: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека (Г.Г.Онищенко, И.В.  Брагина, А.А. Волков,  Т.Ю. Завистяева), Учреждение Российской академии медицинских наук научно-исследовательский институт питания РАМН (В.А.Тутельян, И.В.Гмошинский, С.А.Хотимченко, И.В.Аксенов, Е.А.Арианова, В.В.Бессонов, В.М.Верников, М.М.Гаппаров, Р.В.Распопов, О.И.Передеряев, О.Н.Тананова, В.В.Смирнова, А.А.Шумакова, К.И.Эллер), Учреждение Российской академии медицинских наук научно-исследовательский институт эпидемиологии и микробиологии им. Почетного академика Н.Ф.Гамалеи РАМН (А.Л.Гинцбург, Б.С. Народицкий, И.Ю.Грибова, Н.А.Зигангирова, Д.Ю.Логунов Л.Н. Нестеренко, И.Л.Тутыхина, А.И.Тухватулин, М.М.Шмаров, Д.В.Щебляков), Государственное учебно-научное учреждение Биологический факультет Московского государственного университета имени М.В.Ломоносова (М.П.Кирпичников, К.В.Шайтан, А.П.Бонарцев, А.В. Феофанов, Д.В.Багров, В.В.Воинова, А.П.Босхомджиев, А.С.Шебанова, А.С.Китаев, М.Е.Боздаганян, О.М.Ковалева,  Ф.С.Орехов,  О.В.Самсонова, Е.А.Смирнова), Федеральное государственное учреждение науки «Государственный научный центр прикладной микробиологии и биотехнологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (И.А.Дятлов, В.П.Холоденко, М.В.Храмов, В.Н.Герасимов, В.В.Фирстова, В.А.Чугунов, Е.Н.Кобзев), Федеральный научный центр гигиены им.Ф.Ф.Эрисмана Роспотребнадзора (А.И.Потапов, В.Н.Ракитский, А.В.Тулакин, Т.В.Юдина, Л.А.Луценко, Т.К.Татянюк, Г.В.Цыплакова, Л.П.Терешкова, О.В.Жигайло, Н.С.Белоедова, К.Б.Лохин, Н.И.Николаева, И.П.Громова, Е.В.Сарафанюк), Учреждение Российской академии наук Центр «Биоинженерия» РАН (К.Г.Скрябин, О.А.Зейналов, Н.В.Равин, С.П.Комбарова), Учреждение Российской Академии наук Институт биохимии им. А.Н. Баха РАН (В.О.Попов, Б.Б.Дзантиев, А.В.Жердев, Н.В.Голуб), Учреждение Российской академии наук Институт проблем экологии и эволюции им. А.Н.Северцова РАН (Д.С.Павлов, Ю.Ю.Дгебуадзе, Е.С.Бродский, Е.Ю.Крысанов, Т.Б.Демидова, А.В.Купцов), Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы» (ФГУП ВНИИМС) (С.А Кононогов, С.С. Голубев), ООО «Интерлаб» (А.Н.Веденин, Г.В.Казыдуб).

 

2. Разработаны в рамках реализации Федеральной целевой программы «Развитие инфраструктуры наноиндустрии в Российской Федерации на 2008 - 2010 годы».

 

3. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г.Г.Онищенко 24 мая 2010 г.

 

4. Введены в действие с 24 мая 2010 г.

 

5. Введены впервые.


                                                                УТВЕРЖДАЮ

                                                     Руководитель Федеральной службы по надзору в сфере защиты

прав потребителей и благополучия человека,

                                                    Главный государственный санитарный  врач

Российской Федерации

                                                                                              

_____________________ Г.Г.Онищенко

                                                        « 24 »      05           2010 г.

                                                        

ГИГИЕНА, ТОКСИКОЛОГИЯ, САНИТАРИЯ

ИСПОЛЬЗОВАНИЕ МЕТОДОВ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ НАНОМАТЕРИАЛОВ НА ПРЕДПРИЯТИЯХ НАНОИНДУСТРИИ

Методические рекомендации

 

МР 1.2.2639-10

_____________________________________________________________________________

 

I. ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1. Настоящие методические рекомендации определяют применение методов качественного и количественного определения наноматериалов на предприятиях наноиндустрии в ходе гигиенического контроля за содержанием наноматериалов и наночастиц в воздухе рабочей зоны, атмосферном воздухе, сточных водах, живых организмах - компонентах природных экосистем.

1.2. Настоящие методические рекомендации применяются при мониторинге процессов производства, оборота, использования и утилизации наноматериалов в целях принятия решений по оценке рисков.

1.3. Методические рекомендации разработаны с целью обеспечения единства измерений и адаптации имеющихся методов и средств качественного и количественного анализа наночастиц в ходе контроля за содержанием наноматериалов искусственного происхождения в природных объектах.

1.4. Методические рекомендации предназначены для специалистов учрежденийФедеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, научно-исследовательских организаций гигиенического профиля и медицинских учебных заведений, предприятий наноиндустрии, а также иных организаций и учреждений, проводящих исследования по изучению содержания наноматериалов.

 

II. ВВЕДЕНИЕ

 

Контроль и надзор за производством, оборотом, использованием и утилизацией наноматериалов, гигиеническое нормирование содержания искусственных наночастиц в объектах окружающей среды требует наличия методов, позволяющих осуществлять выявление, идентификацию и количественное определение наночастиц искусственного происхождения в объектах окружающей среды (воздух, почва, вода, организмы животных и растений – компоненты биоты, сельскохозяйственное сырьё, пищевые продукты). В числе методов, существующих в настоящее время, наиболее разработанным и надёжным применительно к идентификации и выявлению искусственных наночастиц является электронная микроскопия. Она позволяет определять число, размер, форму частиц электронно-плотных веществ в диапазоне размеров 1-100 нм в составе сложных многокомпонентных, многофазных матриксов, какими являются объекты природного происхождения, такие, как биологические ткани и отдельные клетки. С помощью дополнительных опций дифракции электронов в выбранной области и спектров характеристических потерь энергии электронов (СХПЭЭ) можно установить наличие у наночастиц кристаллической структуры и определённого химического состава, что является ценной дополнительной информацией  для их идентификации.

Электронная микроскопия позволяет приближённо оценить число наночастиц определенного вида в единице объёма или массы анализируемой продукции. Однако, точные количественные данные о содержании наночастиц, необходимые для выполнения задач их гигиенического нормирования, с помощью метода электронной микроскопии в общем случае получить не представляется возможным. После того, как наночастицы определённого химического состава идентифицированы в образце, их количественный анализ производится с использованием метода атомно-эмиссионной спектрофотомерии и масс-спектрометрии с индуктивно связанной плазмой. При этом анализируется содержание определённых химических элементов, являющихся маркёрными для наночастиц данного класса. По их содержанию в образце, с учётом сведений химического и фазового состава наноматериала, плотности частиц, их распределения по размерам можно определить собственно массу, число и суммарную площадь поверхности частиц в единице образца, что позволяет перейти собственно к задаче гигиенического нормирования наноматериалов.

В случае фуллеренов, являющихся наночастицами сложенными по преимуществу атомами углерода, методы ПЭМ и ИСП-МС неинформативны. Методом выбора для определения этого класса наноматериалов в составе объектов окружающей среды является высокоэффективная жидкостная хроматография (ВЭЖХ) на С18 обращённой фазе, сочетаемая с определенным типом пробоподготовки (экстракцией ароматическими органическими растворителями).

Настоящие методические рекомендации разработаны в целях установления единого, научно обоснованного подхода к применению перечисленного комплекса методов в целях выявления, идентификации и количественного определения наиболее важных видов искусственных наноматериалов  в объектах окружающей среды в ходе реализации задач контроля за наноматериалами на всех стадиях их жизненного цикла.

III. ОБЩИЕ ПОЛОЖЕНИЯ

3.1. Проведение исследований по определению наноматериалов в объектах окружающей среды, живых организмах и пищевых продуктах определяются правилами надлежащей лабораторной практики.

3.2. При градуировке измерительной аппаратуры и количественных определениях наноматериалов в объектах окружающей среды применяются стандартные образцы наноматериалов (стандарты).

3.3. Каждый стандарт наноматериала должен быть охарактеризован на соответствие государственному эталонному образцу по показателям химического состава (включая наличие примесей), размеру и форме частиц, удельной площади поверхности, типу кристаллической структуры. Указанные характеристики определяются с использованием методов масс-спектрометрии с индуктивно связанной плазмой, трансмиссионной электронной микроскопии, дифракции электронов в выбранной области, СХПЭЭ. В случае стандартных образцов фуллеренов при проверке соответствия используется метод обращённофазовой ВЭЖХ.

3.4. Каждый стандартный образец наноматериала должен быть снабжён «Паспортом безопасности наноматериалов», который составляется в соответствии с ГОСТ 30333-2007 «Паспорт безопасности химической продукции. Общие требования».

3.5. Стандартные образцы наноматериалов должны иметь упаковку для защиты при транспортировке от загрязнения или порчи.

3.6. Хранение стандартных образцов наноматериалов осуществляется отдельно от остальных применяемых веществ с соблюдением условий хранения, указанных в паспорте безопасности на протяжении всего срока годности образца.

3.7. Хранение и использование стандартных образцов наноматериалов осуществляется в соответствии с утвержденным протоколом исследования.

3.8. Оборудование, используемое в организациях, проводящих определение наноматериалов в объектах окружающей среды должно иметь государственный сертификат соответствия и проходить метрологический контроль (поверку) аккредитованными для этого организациями в установленном порядке и в установленные сроки.

3.9. Эксплуатация оборудования проводится в соответствии с техническим паспортом и инструкцией по применению. Результаты проведения градуировки, поверки и текущего ремонта оборудования фиксируются в специальном журнале, доступном в любое время сотрудникам, эксплуатирующим оборудование или обеспечивающим его обслуживание.

3.10. При эксплуатации оборудования, содержащего источники ионизирующих излучений, должны соблюдаться требования безопасности, определяемые «Нормами радиационной безопасности НРБ 99/2009»

3.11. Отчёт о проведённом исследовании является основным документом, подтверждающим результаты определения наноматериалов в объектах окружающей среды.  Отчет должен в обязательном порядке содержать следующие сведения: название исследования; адрес организации; даты начала и завершения исследований; цель и задачи исследования; характеристика определяемого наноматериала; перечень исследованных образцов и применяемых стандартов; схема проведения исследования; перечень использованной аппаратуры и режимы её работы, описание методов статистической обработки результатов; результаты исследования, представленные в виде обобщающих таблиц, рисунков с соответствующей статистической обработкой и комментариев к ним; заключение.

3.12. Отчет о результатах проведенного исследования составляется ответственным исполнителем, утверждается руководителем организации и скрепляется печатью организации.

3.13. Контроль за качеством работ по определению содержания наноматериалов в объектах окружающей среды, включает в себя оформление перечня исследований, проводимых в организации, с указанием для каждого исследования руководителя и заказчика, названия определяемого наноматериала, даты начала и состояния каждого исследования на текущий момент времени, оценку протоколов и методов исследования на соответствие правилам лабораторной практики, мониторинг текущих исследований, отчет о проведенных проверках и рекомендации по устранению недостатков.

3.14. Для осуществления контроля качества руководство организации, проводящей исследования по определению содержания наноматериалов в объектах окружающей среды, живых организмах и пищевых продуктах назначает, в соответствии с правилами надлежащей лабораторной практики, ответственных лиц за мониторинг исследования из числа сотрудников, не участвующих в исследовании.

3.15. На все производственные операции, включая: поступление, идентификацию, маркировку, отбор, обработку проб, использование и хранение исследуемых проб, хранение и аттестацию стандартов; обслуживание и калибровку измерительных приборов и оборудования для контроля содержания наноматериалов в объектах окружающей среды; приготовление реактивов, ведение записей, отчетов и их хранение; обслуживание помещений; обезвреживание или утилизация наноматериалов и содержащих их образцов (если это необходимо); должны иметься стандартные операционные процедуры (СОП). СОП разрабатываются организацией, аккредитованной в установленном порядке на проведение исследований по определению содержания наноматериалов, и утверждаются руководителем организации

3.16. Соблюдение СОП осуществляется в целях обеспечения качества, достоверности и воспроизводимости результатов исследования.

3.17. Отклонения от стандартных операционных процедур должны быть документально оформлены и утверждены руководителем исследования.

3.18. Организация, проводящая исследование по определению содержания наноматериалов в объектах окружающей среды, живых организмах и пищевых продуктах, должна иметь утвержденный порядок приема и учета поступления анализируемых проб и стандартов наноматериалов; проводить учет анализируемых проб и стандартов наноматериалов при поступлении, расходовании, возврате заказчику или их утилизации; принимать меры по обеспечению идентификации исследуемых веществ (название, химическая формула, номер серии, даты выпуска, условия хранения и сроки годности) и их стабильности на протяжении всего исследования. Для образцов наноматериалов на этикетке дополнительно должны указываться степень дисперсности, размер, форма частиц, при необходимости - удельная площадь поверхности и кристаллическая структура.

3.19. Сотрудники, принимающие участие в проведении исследований по определению содержания наноматериалов в объектах окружающей среды, живых организмах и пищевых продуктах, обязаны соблюдать конфиденциальность в отношении любых данных, полученных в ходе исследования, в соответствии с законодательством Российской Федерации.

3.20. Организация, проводящая исследования по определению содержания наноматериалов в объектах окружающей среды, живых организмах и пищевых продуктах, должна обеспечить конфиденциальность результатов исследований в рамках принятых ею обязательств и в соответствии с законодательством Российской Федерации.

Атмосферный воздух.

Основным путем попадания наночастиц в организм человека, учитывая доминирующие по объемам производства виды наночастиц, является воздушно-ингаляционный. Из содержащихся в воздухе наночастиц преобладают продукты сгорания, например, топлива дизельных двигателей (так называемые «непромышленные» наночастицы). Риск экспозиции промышленно производимыми наночастицами относится, в первую очередь, к людям, непосредственно задействованным в изготовлении, переработке или использовании наноматериалов либо контактирующим с наночастицами в помещениях исследовательских лабораторий. По сравнению с этим степень экспозиции человека наночастицами, циркулирующими в атмосферном воздухе, существенно ниже.

При контроле наночастиц в атмосферном воздухе должен учитываться ряд метрических показателей, включающих массу и размер наночастиц, число частиц и площадь их поверхности, с детальной оценкой влияния этих параметров на степень риска в отношении здоровья человека.

Перечень воздушных объектов, в которых проводится контроль за содержанием наночастиц:

1. атмосферный воздух;

2. воздух на предприятиях наноиндустрии:

2.1 воздух помещений рабочей зоны;

2.2 воздух санитарно-защитной зоны.

3. воздух помещений исследовательских лабораторий.

Водные объекты.

Вода может быть первичным путем поступления наноматериалов в организм человека, наземных животных и водных организмов. Очистка загрязненных сточных вод с применением наноматериалов (например, наножелеза для нейтрализации хлорсодержащих соединений, наносеребра для дезинфекции) как эффективный способ коррекции водоносных слоев потенциально может способствовать попаданию наночастиц в питьевую воду. Поэтому необходимо осуществлять обязательный контроль содержания наноматериалов в водопроводной воде.

Перечень водных объектов, в которых проводится контроль на содержание наночастиц:

1. промышленные сточные воды;

2. бытовые сточные воды;

3. воды открытых водоемов;

4. водопроводная вода.

Почвы

Попадание наночастиц в почвы может происходить в результате применения наноматериалов в системах очистки почвы и воды, для сельскохозяйственных нужд (в качестве наноудобрений, пестицидов, препаратов для обработки семян, материалов для агропленок, приготовления гидропонических растворов и др.), а также путем оседания наночастиц, находящихся в атмосфере, посредством сточных вод и донных отложений. Загрязнение почв наноматериалами представляет серьезный риск попадания в организм человека, ткани наземных растений и животных.

Перечень почвенных объектов, в которых проводится контроль на содержание наночастиц:

1. почвы вблизи предприятий и других объектов наноиндустрии;

2. почвы вблизи автомобильных дорог в пределах населённых пунктов и рекреационных территорий;

3. почвы сельскохозяйственных угодий.

Гидробионты

Поверхностные свойства наноматериалов определяют стабильность и подвижность коллоидных систем, образуемых наночастицами, а также их агрегацию и отложение в водных системах. Стабильность коллоидных суспензий наночастиц обуславливает высокую вероятность накопления наночастиц в водорослях с последующей передачей наночастиц по пищевой цепи гидробионтов. После попадания наноматериалов в водную систему посредством сточных вод или промышленных выбросов происходит их аккумуляция в растительных организмах (например, водорослях), а также организмах беспозвоночных животных (планктоне, бентосе, ракообразных), являющихся первичными звеньями пищевой цепи, и далее переход в организмы водных позвоночных, участвующих в пищевой цепи человека.

Поскольку ключевым фактором, определяющим поведение наночастиц в водных средах, являются их поверхностные свойства, при контроле содержания наночастиц в организме гидробионтов необходимо учитывать такие параметры, как химический состав наночастиц, их размер, концентрацию, агрегационную способность и поверхностный заряд.

Перечень гидробионтов, в которых проводится контроль на содержание наночастиц:

1. зоопланктон;

2. фитопланктон (например, низшие водоросли);

3. водные беспозвоночные (например, ракообразные, моллюски);

4. водные позвоночные (рыбы).

Водоросли, грибы

Наноматериалы, поступающие в почву, грунтовые воды и воды открытых водоемов в результате антропогенной деятельности, могут проникать в ткани несовершенных грибов и водорослей. Известно, что клеточные стенки грибов обладают свойством полупроницаемости. Наночастицы проникают через клеточные стенки и достигают плазматической мембраны. Следующий за этим эндоцитоз, а также проникновение наночастиц через ионные каналы или с помощью транспортных белков обуславливают попадание наночастиц в клеточные органеллы. Находящиеся внутри клеток наночастицы способны оказывать влияние на метаболические процессы грибов и водорослей. Поскольку степень токсического воздействия (угнетение фотосинтетических процессов и газообмена, образование свободных радикалов) наночастиц на эти организмы определяется в основном химическим составом и поверхностной реакционной способностью наноматериалов, при контроле их содержания в этих объектах окружающей среды необходимо учитывать прежде всего эти параметры.

Некоторые наночастицы, обладающие антимикробным и противогрибковым действием, могут оказывать влияние на жизнедеятельность свободноживущих азотфиксирующих бактерий и, таким образом, нарушать равновесие в симбиотических взаимодействиях между грибами, бактериями и растениями. Это может привести к существенным нарушениям в экосистеме. Кроме того, попадание наночастиц в такие объекты окружающей среды, как грибы, может отрицательно сказаться на функциях этих организмов при защите растений-хозяев от фитопатогенов и факторов оксидативного стресса. Трофический переход наночастиц обуславливает высокую вероятность их попадания в ткани почвенных животных, основным источником питания которых являются грибы и бактерии. Таким образом, попадание наноматериалов в любой компонент биоценоза может привести к внедрению наночастиц в другие объекты данной системы. При этом контаминация наночастицами водорослей и грибов является информативным индикатором, позволяющим принимать оперативные меры по предотвращению последствий загрязнения.

Перечень объектов, в которых проводится контроль на содержание наночастиц:

1. ткани несовершенных грибов (мицелий);

2. ткани водорослей (у крупных макрофитов – слоевище).

3. ткани миксомицетов (плазмодий, плодовые тела)

4. лишайники (слоевище).

Ткани наземных растений.

Попадание наноматериалов в ткани наземных растений с последующим накоплением и встраиванием наночастиц в пищевые цепи может происходить несколькими путями. Перенос загрязняющих почву и грунтовые воды наночастиц осуществляется с помощью корневой системы растения посредством эндоцитоза; наземная часть растительных организмов подвергается экспозиции наночастицами, содержащихся в атмосферном воздухе. При этом растения с большим индексом площади поверхности листьев аккумулируют большие количества наночастиц, увеличивая приток наноматериалов в пищевые цепи. Преднамеренное использование нанопрепаратов в растениеводстве (при послеуборочной обработке различных сельскохозяйственных культур, хранении овощей и фруктов в регулируемых газовых средах, предпосевной обработке и протравливании семян, в качестве пестицидов, наноудобрений, стимуляторов роста растений, в составе гидропонических растворов и других целях) также обуславливает аккумуляцию наночастиц в тканях растений.

Перечень тканей наземных растений, в которых проводится контроль на содержание искусственных наночастиц:

1. листья;

2. корни;

3. плоды.

Ткани наземных животных.

Попадание искусственных наночастиц в ткани наземных животных обусловлено двумя факторами – распространением наночастиц в почвах, грунтовые водах и тканях наземных растений, а также направленным использованием препаратов, содержащих наночастицы, в агропромышленном комплексе – в целях обеззараживания воздуха и различных материалов животноводческих помещений, при стимуляции роста кормовых растений, в ветеринарии, для улучшения качества кормов. Наночастицы металлов включают в состав премиксов для повышения жизнестойкости животных и их продуктивности. Материалы с наночастицами серебра, обладающие антибактериальными свойствами, в виде красок, бесхлорных средств дезинфекции, перевязочных материалов, лака для покрытия катетеров применяются в ветеринарии для борьбы со стафилококковыми и другими инфекциями. Наносеребро может использоваться в доильных аппаратах, в фильтрах систем кондиционирования животноводческих помещений.

Поскольку реакционная способность и биологическая активность наночастиц зависит от их состава, размеров, концентрации, заряда, площади поверхности, необходимо учитывать эти параметры при контроле содержания наночастиц в животных организмах.

Перечень органов и тканей наземных животных, в которых контролируется содержание наночастиц:

1. органы пищеварительной системы (кишечник, печень);

2. органы дыхательной системы (легкие);

3. органы мочевыделительной системы (почки);

4. органы и ткани кровеносной системы (сердце, кровь);

5. органы нервной системы (мозг);

6. покровные ткани (кожа);

7. экскреты (моча, молоко).

Частицы металлов

Выявление наночастиц металлов основано на свойстве их высокой электронной плотности. Выявление и идентификацию наночастиц металлов рекомендуется проводить методами ПЭМ в образцах, приготовленных без использования контрастирующих агентов (солей тяжелых металлов).

К приоритетным наноматериалам данной категории относятся наночастицы золота и серебра, для которых возможно привести общий порядок идентификации. Наночастицы в препарате могут представлять гетерогенную смесь по размерам, с низким показателем полиморфизма, поэтому их идентификация по размерным параметрам в образце затруднена. Наночастицы серебра и золота имеют низкий показатель полиморфизма, характерна, как правило, эллиптическая форма частиц с широким диапазоном коэффициента формы частиц. Среди смеси компонентов наночастицы можно отличить по электронной плотности и правильной не угловатой поверхности. Агрегированное состояние наночастиц в материале встречается, однако сохраняется признак отдельных частиц – правильная поверхность без углов. Существует вероятность ошибки: как ложноположительной (когда частицы матрикса принимаются за наночастицы, так и ложноотрицательной, когда наночастицы выбраковываются из-за схожести с компонентами матрикса). Обязательным является получение электронограммы в режиме дифракции и сравнение с электронограммой референс-образца анализируемых наночастиц. 

Порядок идентификации наночастиц золота и серебра:

1. обнаружить электронно-плотные частицы или их агрегаты;

2. отметить форму и коэффициент формы наночастиц;

3. отметить характер поверхности наночастиц;

4. отметить присутствие наночастиц в агрегированной форме и сохраняются ли морфометрические признаки наночастиц при образовании агрегатов;

5. получить электронограмму в режиме дифракции сопоставить полученные результаты с референс-образцами.

Квантовые точки

Идентификация квантовых точек осуществляется на основе выявления у них специфической флуоресценции. Длины волн возбуждения и эмиссии флуоресценции представляются заказчиком или могут быть определены на спектрофлуориметре в автоматическом режиме. Исследованию подвергается разбавленная водная дисперсия наноматериала или содержащей его пробы. Идентификация квантовых точек проводится путём сравнения максимума спектра флуоресценции с паспортным значением или величиной для стандарта, а количественное определение – путём сравнения интенсивности флуоресценции анализируемого и стандартного образца. При количественном спектрофлуориметрическом определении необходимо учитывать наличие артефактов, обусловленных мутностью дисперсных сред и возможным наличием в составе комплексной продукции веществ – гасителей флуоресценции.

Биогенные наночастицы

При выявлении и идентификации наночастиц биогенного происхождения в составе продукции заявитель предоставляет сведения о составе наночастиц (ДНК-, РНК-содержащие наночастицы, белковые наночастицы, наночастицы других типов биополимеров) и об их видовой принадлежности. В соответствии с этим выбирается метод идентификации, отвечающий наибольшей биологической специфичности тестирования, из следующего списка:

1) ДНК содержащие наночастицы – полимеразная цепная реакция (ПЦР) с видоспецифическим олигодезоксирибонуклеотидным праймером в варианте ПЦР с электрофоретическим разделением (идентификация) или ПЦР в реальном времени (количественное определение).

2) РНК-содержащие вирусы – ПЦР с обратной транскрипцией (ОТ) с двумя нетождественными видоспецифичными олигодезоксирибонуклеотидными праймерами.

3) Белок-содержащие наночастицы – двухвалентный твёрдофазный иммуноферментный тест (ИФА) или ЭФ в ПААГ с электрофоретическим переносом на нитроцеллюлозную мембрану и иммуноблоттингом. Используются моноклональные видоспецифические антитела против определяемого белка и антивидовые антитела, конъюгированные с пероксидазой.

4) Прочие биогенные наночастицы. Метод определяется спецификой анализируемого наноматериала. Для большого числа биогенных наночастиц может быть применён метод биотестирования специфической биологической активности. Сведения о подходящей для биотестирования модели предоставляются заявителем.

Требования к используемой аппаратуре

6.1.1. Для реализации метода применяются просвечивающие электронные микроскопы, оборудованные системой цифровой регистрации изображений и имеющие в своем составе модули для измерения дифракции электронов и спектров характеристических потерь энергии электронами, со следующими параметрами:

- величина ускоряющего напряжения электронов не менее 80 кВ

- максимальное увеличение не менее 100000

- диапазон увеличений в режиме СХПЭЭ не уже чем от 20 до 300

- система фильтрации электронов по энергии и параллельная детектирующая система спектров потерь энергии с разрешением по энергии не хуже 2 эВ и областью изменения энергии в диапазоне от 0 до 1000 эВ или больше

- наличие режима дифракции параллельного пучка электронов. В этом режиме апертурная диафрагма должна избирательно ограничивать освещаемую область образца в диапазоне размеров (по диаметру) от 1 до 50 мкм или в более широком диапазоне.

- предельное разрешение двух точек (по техническому паспорту) не хуже 0, 4 нм;

- предельное разрешение двух линий (по техническому паспорту) не хуже 0, 25 нм.

        Примеры аппаратуры, удовлетворяющей указанным требованиям, приведены в справочном приложении.

      6.1.2. Подготовка электронного микроскопа к работе.

Ежедневно после включения микроскопа проверяются и корректируются (при необходимости) следующие настройки:

- настройка катода и наклон источника освещения.

Оптимальный режим накала устанавливается по изображению катода на люминесцентном экране ПЭМ, а именно, по изображению кроссовера. Нарушение ориентировки пушки устраняется путём изменения её угла наклона (в соответствии с инструкцией к конкретному прибору).

- настройка конденсорной диафрагмы.

При сведении (фокусировке) и разведении (дефокусировке) луча на люминесцентном экране освещённая область должна симметрично приближаться к центру (при фокусировке) или к краям экрана (при дефокусировке).

- коррекция астигматизма конденсорной линзы (астигматизма пятна).

При сведении луча освещённое пятно на экране должно иметь форму круга, а не эллипса.

- настройка объективной диафрагмы

Объективная диафрагма должна быть отцентрирована. Следует отметить, что срок службы объективных диафрагм в среднем составляет около 3-х лет, после чего их следует заменять. Старые загрязнённые диафрагмы могу стать причиной ухудшения качества изображения

- коррекция астигматизма проекционной линзы.

Проверяется и настраивается в режиме дифракции по форме каустики. Кроме того, одним из признаков появления астигматизма является смещение изображения в стороны при настройке фокуса (при скорректированном астигматизме оно может лишь вращаться вокруг центральной оси).

Раз в неделю, а также при возникновении подозрения на нарушение коррекции астигматизма проверяется и корректируется

- коррекция астигматизма объективной линзы

Проверка и коррекция проводится с помощью тест-образца, имеющего неоднородности с чёткими краями (рекомендуется использовать углеродную пленку с дырочками), по симметричности (должны быть симметричны) полос Френеля, формирующихся на краях неоднородностей (на краях дырочек в углеродной пленке), при фокусировке и дефокусировке изображения (выполняется путем дефокусировки линз объектива). Возникновение такого астигматизма может быть связано с загрязнением электронной оптики. До принятия ГОСТа, регламентирующего стандартные образцы для коррекции астигматизма, рекомендуется использовать образец «astigmatism сorrection holey carbon film» (каталожный номер 609, фирмы «Ted Pella. Inc.», США), который соответствует стандарту ISO9001/9002.

Детальные инструкции по проверке и коррекции перечисленных выше настроек приведены в инструкциях к конкретным электронным микроскопам. Неправильные настройки и нескорректированный астигматизм линз приводят к ухудшению качества изображения.

6.1.3. Плановая проверка качества настройки электронного микроскопа.

 Не реже 1 раза в месяц проверяется правильность настройки микроскопа, включая следующие параметры: разрешающая способность микроскопа, калибровка масштаба изображения на ПЗС камере при различных коэффициентах увеличения (в первую очередь в рабочем диапазоне увеличений). Выбираются ускоряющее напряжение и параметры линз объектива, при которых будут проводиться измерения дифракции электронов, при этих параметрах измеряется дифракция электронов от стандартного образца и, при необходимости, определяется специальный коэффициент, обеспечивающий пересчет диаметров окружностей на дифракционной картине в межплоскостные расстояния кристаллической решетки для анализируемых образцов. Для проверки перечисленных параметров используются соответствующие стандартные образцы. Поверка осуществляется в соответствии с документацией производителя электронного микроскопа и действующими СОП.

Разрешающая способность проверяется путем получения изображений от кристаллов, в которых должны быть видны (разрешены) плоскости кристаллической решетки. В зависимости от предельной разрешающей способности микроскопа в качестве стандартных рекомендуется использовать следующие образцы: кристаллы асбеста-крокидолита (межплоскостные расстояния 0, 903 и 0, 452 нм; опасен для здоровья – использовать с осторожностью! ), кристаллы фталоцианина меди (межплоскостные расстояния 1, 03 нм), графитизированный углерод (межплоскостные расстояния 0, 34 нм), ориентированные кристаллы золота (межплоскостные расстояния 0, 204, 0, 143 и 0, 102 нм). До принятия ГОСТа, регламентирующего стандартные образцы для поверки разрешающей способности электронных микроскопов, рекомендуется применять следующие образцы фирмы «Ted Pella. Inc.», США, соответствующие стандарту ISO9001/9002: аsbestos-сrocidolite (каталожный номер 624), copper phthalocyanin (каталожный номер 629-1), graphitized carbon black(каталожный номер 645), orientated gold crystals(каталожный номер 646).


Поделиться:



Последнее изменение этой страницы: 2020-02-17; Просмотров: 58; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.074 с.)
Главная | Случайная страница | Обратная связь