Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Устойчивость линейных систем



 

Устойчивость линейной системы можно исследовать по характеру изменения только одной любой ее переменной. Линейная система называется устойчивой, если ее выходная координата остается ограниченной при любых ограниченных по абсолютной величине входных воздействиях. Устойчивая линейная система должна переходить от одного установившегося состояния к другому при изменении задающего воздействия. Устойчивость линейной системы определяется ее характеристиками и не зависит от действующих воздействий.

Таким образом, для определения устойчивости линейной системы требуется найти изменение ее управляемой величины. Структурная схема линейной системы приведена на рис.5.3, где W(s) - передаточная функция разомкнутой системы.

 

Рис. 5.3. Структурная схема линейной системы

Процессы в системе (рис.5.3), как следует из (4.3), описываются дифференциальным уравнением вида

 

D(p)y(t) = R(p)g(t). (5.2)

 

Решение уравнения (5.2) состоит из двух составляющих:

 

y(t) = yB(t) + yn(t), (5.3)

 

где yB(t) - вынужденное решение;

yn(t) - переходная составляющая.

Система устойчива, если переходная составляющая решения стремится к нулю при времени, стремящемся к бесконечности. Это означает, что если система выведена из состояния равновесия каким-либо возмущением, то она возвращается в исходное состояние после устранения этого возмущения, т.е. устойчивость системы определяется ее свободным движением. На рис.5.4 изображены возможные виды изменения переходной составляющей решения уравнения (5.2) при скачкообразном задающем воздействии.

Если yn(t)®0 при t®¥, то система устойчивая;

если yn(t)®¥ при t®¥, то система неустойчивая;

если yn(t)=const при t®¥, то система нейтральная.

Рис. 5.4. Возможные виды переходной составляющей

Переходная составляющая решения уравнения (5.2) зависит от корней характеристического уравнения, которое получается путем приравнивания характеристического полинома к нулю:

 

D(p) = 0, (5.4)

где .

Переходная составляющая решения

, (5.5)

где pi - корни характеристического уравнения (полюсы системы);

ci - постоянные интегрирования.

Действительному корню характеристического уравнения pi в выражении (5.5) соответствует слагаемое

yni(t) = ci .

 

Если pi< 0, то переходная составляющая с ростом времени стремится к нулю, если pi> 0, то эта составляющая неограниченно возрастает.

Паре комплексно-сопряженных корней уравнения (5.4) соответствует слагаемое

yni(t) = Ai sin(bit+ji),

 

где ai±jbi - корни характеристического уравнения;

Ai, ji - постоянные интегрирования.

При этом переходная составляющая с ростом времени стремится к нулю, если вещественные части корней отрицательны, в противном случае амплитуда колебаний переходной составляющей возрастает.

Пара мнимых корней характеристического уравнения позволяет получить переходную составляющую в виде колебаний с постоянной амплитудой:

yni(t) = Aisin(bit+ji).

Таким образом, для устойчивости системы необходимо и достаточно, чтобы все корни характеристического уравнения имели отрицательные вещественные части, или эти корни на плоскости комплексного переменного были расположены слева от мнимой оси (рис.5.5).

 

Рис. 5.5. Комплексная плоскость корней характеристического уравнения

 

Если корни характеристического уравнения расположены на мнимой оси, то система находится на границе устойчивости. При этом возможны два случая: корень в начале координат и пара мнимых корней. Нулевой корень появляется, когда свободный член характеристического уравнения равен нулю. В этом случае границу устойчивости называют апериодической. Если остальные корни этого уравнения имеют отрицательные вещественные части, то система устойчива не относительно выходного сигнала, а относительно его производной, выходной сигнал в установившемся режиме имеет произвольное значение. Такие системы называют нейтрально устойчивыми. В том случае, когда характеристическое уравнение имеет пару мнимых корней, границу устойчивости называют колебательной.

Если хотя бы один из корней лежит в правой полуплоскости комплексной плоскости корней характеристического уравнения, то система неустойчивая.

Вычисление корней характеристического уравнения высокого порядка затруднительно. Поэтому для исследования устойчивости систем разработаны критерии (правила), позволяющие судить о расположении корней на комплексной плоскости без их расчета. Прежде чем воспользоваться для оценки устойчивости тем или иным критерием, следует проверить выполнение необходимого условия устойчивости.

Необходимым, но недостаточным условием устойчивости системы является положительность (отрицательность) всех коэффициентов характеристического уравнения системы

, (5.6)

т.е. соблюдение условия ai > 0 для всех i от 0 до n, где n - порядок системы.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-17; Просмотров: 1016; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.013 с.)
Главная | Случайная страница | Обратная связь