Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ОБЩИЕ МЕТОДЫ ОБ ИЗМЕРЕНИИ МАГНИТНОГО КУРСА



ОБЩИЕ МЕТОДЫ ОБ ИЗМЕРЕНИИ МАГНИТНОГО КУРСА

ЛЕТАТЕЛЬНОГО АППАРАТА

Назначение курсовых приборов и систем

Курсовые приборы и системы служат для определения кур­са ЛА, являющегося важным пилотажно-навигационным пара­метром.

Курсом летательного аппарата называется угол между некоторыми заданными направлениями в плоскости горизонта и проекцией на эту плоскость продольной оси ЛА (рис. 1). В зависимости от выбора начала отсчета разли­чают следующие виды курса: истинный, отсчитываемый от северного направления гео­графического меридиана; магнитный, отсчи­тываемый от северного направления магнитного меридиана; ортодромический, отсчитывае­мый от «северного» направления ортодромического.

В авиационных курсовых приборах (компа­сах) и системах наиболее широко применяются магнитный и гироскопический методы измерения курса. Первый из них основан на использовании магнитного поля Земли, второй — на учете за­кона движения гироскопа относительно связанной с Землей системы координат. Магнитный метод реализуется в магнитных компасах, а гироскопический — в курсовых гироскопах (гирополукомпасах).

Ограниченное применение находят астрономические компа­сы, реализующие астрономический метод измерения курса, основанный на пеленгации небесных тел с учетом законов их движения относительно Земли. Достаточно широко используют­ся радиокомпасы, соответствующие радиотехническому методу измерения курсового угла наземной радиостанции (КУР) — угла между горизонтальными проекциями продольной оси ЛА и направле­ния на радиостанцию.

Из перечисленных курсовых приборов в данной главе рас­сматриваются магнитные компасы и курсовые гироскопы. Поми­мо самостоятельного применения они служат базовыми датчи­ками в курсовых системах и курсовертикалях. Магнитные неди­станционные компасы выполняют важную роль резервных измерителей курса, используемых при отказе основных курсовых средств.

Курсовые приборы

Магнитные компасы. Простейшим устройством для определения направления магнитного меридиана Земли служит магнит­ная стрелка. Северное направление магнитного меридиана задается горизонтальной составляющей Н вектора напряженно­сти Т магнитного поля Земли (рис. 2). Угол называется магнитным наклонением, а угол d между направлениями географического NS и магнитного меридианов — магнитным склонением. Величина и знак d, необходимые для пере­хода от магнитного курса к истинному, определяются по полет­ным картам.

 

       
   
Рис. 3. Чувствительный элемент индукционного датчика курса. 1, 2 – первичные обмотки, 3 – пермаллоевые сердечники, 4 – вторичная сигнальная обмотка.
 
Рис. 2. Параметры магнитного поля Земли
 

 


В недистанционных магнитных компасах (например, типа КИ-13) роль магнитной стрелки выполняют цилиндрические по­стоянные подвижные магниты. Компасам с подвижными магни­тами свойственны значительные погрешности из-за трения в опорах магнитной системы. Кроме того, при разворотах само­лета возникают погрешности увлечения, поскольку начинающая вращаться при этом жидкость (заполняющая корпус прибора) отклоняет ось магнитов от вектора Н.

От указанных погрешностей свободны индукционные дат­чики магнитного курса. Чувствительный элемент индукционного датчика (рис. 3) представляет собой два пермаллоевых сердечника 3 с первичными обмотками 1 и 2, включенными встреч­но. Обмотки питаются напряжением U переменного тока часто­ты f. Оба сердечника охвачены вторичной обмоткой 4 (часто пользуются две сигнальные обмотки, намотанные поверх пер­вичных и включенные согласно).

Рис. 4. Схема включения ИД с тремя чувствительными элементами. 1 – основание ЧЭ.

 

В датчиках серии ИД с тремя элементами (рис. 4) послед­ние расположены треугольником на общем основании 1. Осно­вание помещено в двухстепенной карданов подвес и благодаря нижней маятниковости удерживается в горизонтальной плоско­сти. Первичные обмотки элементов соединены последовательно и питаются напряжением U частоты 400 Гц. Концы сигнальных обмоток, соединенных звездой либо треугольником, подсоеди­няются к статорным обмоткам сельсина-приемника СП.

Индукционный датчик курса ИД-6 в отличие от рассмотрен­ного имеет два чувствительных элемента, расположенных вза­имно перпендикулярно (рис. 5). В этом случае вместо сельсина в качестве приемника сигналов используется синусно-косинусный трансформатор (СКТ)

Индукционные датчики курса как самостоятельные устрой­ства не применяются. Они широко используются в курсовых си­стемах для магнитной коррекции последних ввиду более высокой инструментальной, точности по сравнению с датчиками с подвижными магнитами.

Курсовые системы

 

Принцип построения . Ни один из применяемых компасов (датчиков курса) вследствие присущих им недостатков не мо­жет обеспечить точное измерение курса в любых условиях по­лета. По этой причине, а также с целью повышения надежности измерений широко применяются курсовые системы, основанные на комплексном использовании разнородных датчиков курса, при котором уменьшается результирующая погрешность изме­рения.

Базовым датчиком курса в любой курсовой системе служит курсовой гироскоп, корректируемый (непрерывно либо эпизо­дически) от магнитного либо астрономического датчика. Типовая схема взаимодействия датчиков магнитного и гироско­пического курсов поясняется на рис. 7. Роль датчика выполняет так называемый коррекционный механизм (КМ), ро­тор выходного сельсина СПкм которого поворачивается соот­ветственно значению + ( - погрешность магнитного курса) по сигналам индукционного датчика . Гироскопиче­ским датчиком служит курсовой гироскоп в гироагрегате курсо­вой системы с закрепленным на оси внешней рамки ротором сельсина датчика курса СДГА. Статор СДГА поворачивается относительно корпу­са гироагрегата на угол с по­мощью показанной на рисунке сле­дящей системы.

Рис. 7. Схема связи датчиков и
 

 

 

Сигнал курса , выдаваемый потребителям, определяется суммой .

Убедимся, что рассматриваемая схема с точностью до погрешностей обеспечивает равенство .

Пусть = 0. Тогда в согласованном положении следящей системы, когда напряжение роторной обмотки СПкм равно рулю, напряжения статорных обмоток этого сельсина будут од­нозначно определяться только значением . А это означает, что потребителям будет выдаваться сигнал вне зависи­мости от величины (равенство будет обеспечено за счет соответствующего изменения угла ).

Из схемы следует, что постоянная составляющая погреш­ности магнитного (индукционного) датчика пройдет на вы­ход курсовой системы, однако флуктуационная составляющая будет существенно ослаблена по причине инерционности следя­щей системы. Из приведенного выше пояснения следует также, что постоянные погрешности курсового гироскопа (входящие в ) вообще не проходят на выход. Можно показать, что при надлежащем выборе постоянной времени следящей системы медленно изменяющаяся погрешность гироскопа (из-за его дрей­фа) не приведет к существенным погрешностям выхода. Заме­тим, что выходной сигнал рассмотренной системы принято называть гиромагнитным курсом .

При астрокоррекции гироскопического датчика применяется схема, подобная рассмотренной.

Следует подчеркнуть, что медленно меняющиеся погрешно­сти корректирующих датчиков (магнитного либо астрономиче­ского), обусловленные маневрированием ЛА, могут вызвать значительные погрешности курса. Поэтому по мере совершенство­вания курсовых гироскопов применение режимов их длительной коррекции в курсовых системах ограничивается.

 

НАЗНАЧЕНИЕ

 

Курсовая система «Гребень» предназначена для определения курса самолета (вертолета) и для обеспечения сигналами курса как индикаторов курса летчика и штурмана, так и всех самолетных (вертолетных ) устройств, решающих задачи навигации и пилотирования.

Система «Гребень» является централизованным самолетным устройством, объединяющим гироскопические, магнитные и астрономические средства определения курса.

Система «Гребень», предназначена для установки на самолеты и вертолеты. В зависимости от решаемых задач и условий полета система может работать в следующих режимах:

- гирополукомпаса ГПК,

- астрокоррекции АК,

- магнитной коррекции МК,

- начальной выставки или задатчика курса ЗК.

-

 

В процессе работы система получает электрические сигналы от самолетных датчиков:

- угловой скорости разворота;

- истинного или ортодромического курса, определяемого дистанционным астрокомпасом или звездно-солнечным ориентатором;

- синуса широты места;

- угла крена;

- путевой скорости;

 

КОМПЛЕКТАЦИЯ

 

Курсовая система «Гребень» выпускается в двух комплектациях: «Гребень-1» одинарная и «Гребень-2» сдвоенная. В табл. 1 указаны приборы, из которых состоит курсовая система «Гребень».

 

Таблица 1.

Наименование «Гребень-1» «Гребень-2»
шифр кол. шифр кол.
1. Индукционный датчик ИД-6 ИД-6
2. Коррекционный механизм КМ-2 КМ-2
3. Гироагрегат ГА-8 ГА-8
4. Пульт управления ПУ-38 ПУ-39
5. Блок усилителей БУ-12 сер.1 БУ-12 сер.1
6. Рама амортизационная РА-6 сер. 1 РА-6 сер. 1

ТЕХНИЧЕСКИЕ ДАННЫЕ

 

2.3.1. Погрешность системы в режиме ГПК в нормальных климатических условиях и при температуре +500C не превышает 10/час, при температуре до -600С не превышает 20/час.

2.3.2. Погрешность в определении магнитного курса на широтах до 800 не превышает 0, 70 в прямолинейном горизонтальном полете.

2.3.3. Погрешность дистанционной передачи сигналов курса на СКТ не превышает 10'.

2.3.4. Дополнительная погрешность в режимах ГПК на каждую минуту действия линейных или виражных ускорений, а также при выборе высоты или снижений не более 0, 10.

2.3.5. Количество внешних потребителей курса, эквивалентных СКТ-265П, должно быть не более шести.

2.3.6. Время готовности к работе не более:

· В режиме коррекции (МК, АК, ЗК) – 3 мин.

· В режимах ГПК – 5 мин.

При температуре -600С время готовности системы к работе не более 10 мин.

2.3.7. Напряжение и частота в источниках питания:

· Для цепей 3-х фазного переменного тока В частота 4008Гц.

· Для цепей постоянного тока: -27 2, 7В.

2.3.8. Скорости согласования:

· Нормальная скорость в режимах МК, АК, ЗК – от 2 до 40/мин.

· Большая скорость в режимах МК, АК, ЗК – не менее 100/мин.

2.3.9. Потребляемая мощность указана в табл. 2


Таблица 2

Потребляемая мощность Комплектация
«Гребень-1» «Гребень-2»
По постоянному току 25Вт 50Вт
По переменному току 60Вт 130Вт
По постоянному току в цепи обогрева 150Вт 300Вт

 

2.3.10. Переменный ток, потребляемый системой в установившемся режиме, указан в табл. 3.

 

Таблица 3

 

Фаза Потребляемый ток, не более, А
«Гребень-1» «Гребень-2»
А 1, 0 1, 5
В 1, 0 1, 5
С 1, 0 1, 5

 

2.3.11. Вес:

· Гребень-1 – не более 13, 5 кг.

· Гребень-2 – не более 17 кг.

 

ПРИНЦИП ДЕЙСТВИЯ

 

В курсовой системе Гребень используется принцип совместной работы гироскопа направления с каким-либо датчиком курса (корректором). Это принцип заключается в том, что такой датчик (корректор) определяет курс самолета (вертолета) относительно магнитного или истинного меридиана и выдает его для коррекции сигналов курса, снимаемых с гироагрегата.

В зависимости от решаемых задач и условий полета система может работать в одном из следующих режимов:

- начальной выставки или задатчика курса;

- гирополукомпаса;

- астрокоррекции;

- магнитной коррекции;

Переключение между режимами осуществляется с помощью пульта управления.

 

Основным режимом работы курсовой системы является режим гирополукомпаса с начальным согласованием перед взлетом сигналов курса по магнитному курсу от магнитного корректора, или по истинному курсу от астрокорректора, или от задатчика курса при известном стояночном курсе самолета (вертолета).

Гирополукомпас – это авиационный гироскопический прибор, реагирующий на отклонение самолета от взятого направления полета. Принципе действия гирополукомпаса основан на свойстве свободного гироскопа сохранять неизменным положение оси собственного вращения относительно мирового пространства.

В гироскопе, предназначенном для определения отклонения от взятого направления, ось вращения ротора (главная ось) должна быть расположена горизонтально.

Удержание главной оси Z в горизонтальном положении осуществляетьс яс помощью корректирующего устройства – горизонтальной коррекции.

На географических полюсах Земли свободный гироскоп с горизонтальной осью собственного вращения «уходит» по курсу с угловой скоростью равной угловой скорости вращения Земли:

ω =

На любой другой широте угловая скорость «ухода» оси гироскопа в горизонтальной плоскости равна вертикальной составляющей вектора угловой скорости вращения Земли на данной широте.

ω =

ω - угловая скорость ухода на данной широте

- угловая скорость вращения Земли, равная 15 град/час

Ψ - широта места.

В северном полушарии горизонтально расположенная ось гироскопа уходит по направлению вращения часовой стрелки, а в южном полушарии - против часовой стрелки.

Компенсация уходов гироскопов, вызываемых суточным вращением Земли, осуществляется при помощи широтного компенсатора.

Широтный компенсатор состоит из мостового задатчика сигналов широты места, усилителя и азимутального датчика местности.

При подаче на вход усилителя напряжения, пропорционального по величине задаваемой широте Ψ, с выхода усилителя на обмотку датчика моментов поступает ток.

Взаимодействие магнитного поля, создаваемого током в обмотке статора датчика моментов, с постоянным магнитом ротора. Расположенного на горизонтальной оси гиросокопа, создает момент, вызывающий прецессию оси гироскопа в нужном направлении и с необходимой скоростью в зависимости от широты места.

Эта прецессия гироскопа компенсирует «кажущийся» уход гироскопа, вызываемый суточным вращением Земли.

Стабилизация момента, развиваемого датчиком моментов в рабочем диапазоне температур обеспечивается наличием напряжения обратной связи, поступающего на вход усилителя с проволочного сопротивления выполненного из материала с малым температурным коэффициентом сопротивления.

Для формирования и выдачи напряжения, пропорционального широте места, служит мостовой задатчик сигналов, расположенный в пульте управления курсовой системы. Одна из диагоналей мостового задатчика питается от специального стабилизатора напряжения пульта управления а вторая диагональ одним концом соединена со входом усилителя и втором концом с сопротивлением обратной связи, соединенным этим же концом с обмоткой статора датчика моментов.

Мостовой задатчик сигналов содержит два переменных сопротивления R1 и R3. R1 являеться широтным потенциометром, а R3 – баласировачным потенциометром.

Широтный потенциометр служит для подачи напряжения на вход усилителя в зависимости от широты места.

Балансировочный потенциометр предназначен для выдачи дополонительного напряжения на вход усилителя для компенсации уходов гироскопа от его разбаланса в процессе работы.

Сигнал курса выдается потребителем с синусно-косинусного трансформатора типа СКТ-265д гидроагрегата, ротор которого закреплен на вертикальной оси гидроагрегата. Под действием момента широтной коррекции вертикальная ось гироскопа с ротором СКТ будет поворачиваться в сторону, противоположную «кажущемуся» уходу, тем самым сохраняя неизменным положение горизонтальной оси гироскопа относительно координат места вылета, связанных с Землей.

Режим магнитной коррекции применяется для согласования сигналов курса, выдаваемых гирополукомпасом, с показаниями датчика магнитного курса.

Чувствительным элементом определяющим магнитный курс является индукционный датчик ИД-6, сигнальные обмотки которого связаны со статорными обмотками СКТ-приемника первого канала коррекционного механизма КМ-2.

Напряжение снимаемое с обмоток ротора СКТ-приемника первого канала КМ-2, подается на вход усилителя и далее на обмотку управления электродвигателя, который через редуктор приводит ротор СКТ-приемника в положение, соответствующее нулевой ЭДС на входе усилителя.

Таким образом, любому повороту индукционного датчика на какой-либо угол в горизонтальной плоскости относительно вектора горизонтальной составляющей магнитного поля Земли, т.е. углу разворота самолета, будет соответсвовать поворот на такой же угол ротора СКТ-приемника коррекционного механизма.

На одну ось с ротором СКТ-приемника первого канала коррекционного механизма посажен СКТ-применика второго канала КМ-2, статор которого свзяан трехпроходной связью со статором СКТ-датчика гидроагрегата ГА-Е.

Сигнал рассогласования между положением в пространстве горизонтального оси гироскопа и СКТ-применика второго канала коррекционного механизма поступает на вход усилителя гиромагнитного курса и далее на датчик моментов ДМ-6, расположенный на горизонтальной оси, вызывающий прецессию гироскопа относительно измерительной (вертикальной) оси. Прецессия гироскопа продолжается до тех пор, пока не наступит согласованное положение СКТ-приемника коррекционного механизма и СКТ-датчика гидроагрегата. При такой свзяли «индукционный датчик – коррекционный механизм – гидроагрегат» с измерительной оси гироскопа снимается гироскопический курс, непрерывно корректируемый по магнитному курсу, т.е. гиромагнитный курс.

Режим астрокоррекции принципиально аналогичен режиму магнитной коррекции с той лишь разницей, что курс самолета определяется с помощью астрономических компасов.

Роль СКТ-приемника второго канала КМ-2 в данном случае выполняет СКТ-приемник, связанный с измерительной осью астрокопаса.

Режим начальной выставки или задатчика курса так же как и астрокоррекции принципиально аналогичен режиму магнитной коррекции.

В режиме задатчика курса положение СКТ-датчика гидроагрегата приводиться в согласованное положение с СКТ-приемником задатчика курса.

Необходимое значение курса, по которому должен быть согласован гироагрегат, устанавливается с помощью задатчика курса летчиком, который получает информацию о вводимом курсе от устройства начальной выставки.

При развороте самолета с угловой скоростью, превышающей 0, 1-0, 30сек., происходит отключение магнитной коррекции гироагрегата. Сигнал на отключение коррекции поступает с размыкающих контактов реле выключателя коррекции (ВК). Гироагрегат переключается в режим ГПК.

После окончания разворота система переходит в заданный режим работы.

 


БЛОК СХЕМА

 

Курсовая система «Гребень-1», блок-схема которой приведена на рис. 9 состоит из следующих блоков: гироагрегата ГА-8, пульта управления ПУ-38, коррекционного механизма КМ-2, индукционного датчика ИД-6, блока усилителей БУ-12 сер. 1 и рамы амортизаторной РА-6 сер. 1.

 

Рис. 8. Схема блочная курсовой системы «Гребень-1»


ПРОВЕРКА РАБОТОСПОСОБНОСТИ

Выключить выключатели «-27В», «36В 400Гц» на «КПАП-В». Через 10 минут после включения питания переключатель режима на ПУ-38 поставить в положение «МК». Нажать кнопку «контроль» на КМ-2. УППС и РМИ-2 должны отработать курс 315 10 градусов.

 

Проверка в режиме «ЗК»

Переключатель режима работы на ПУ-38 установить в положение «ЗК». На лицевой панели КМ-2 должна загореться лампа «ЗК». На счетчике склонения КМ-2 установить любые значения со знаком «+» или «-» и при нажатой кнопке согласования на ПУ-38 следить за показаниями на УППС. Погрешность показаний не должна превышать 1 градусов.

 

ТРЕБОВАНИЯ К ОТЧЕТУ

 

Отчет должен быть оформлен в соответствии с требованиями нормоконтроля [3, 4]. Привести структурную и функциональную схемы курсовой системы, таблицу экспериментальных данных, выводы, список используемой литературы.

 

 

КОНТРОЛЬНЫЕ ВОПРОСЫ

 

5.1. Назначение и состав курсовой системы «Гребень».

5.2. Как учитывается суточное вращение Земли при определении курса.

5.3. Принцип работы индукционного датчика.

 

УКАЗАТЕЛЬ ЛИТЕРАТУРЫ

1. Авиационное оборудование; Учебник/Под ред. Ю.П. Доброленского. М.:

Воениздат, 1989. 248с.

2. Браславский Д. А. Приборы и датчики летательных аппаратов. М.: Машиностроение, 1970, 392 с.

3. СТП ЛИАП 101-82, Документы текстовые учебные. Титульные листы и основные надписи,

4. СТП ЛИАП 103-85. Документы текстовые учебные. Общие требования. Методические указания.

ОБЩИЕ МЕТОДЫ ОБ ИЗМЕРЕНИИ МАГНИТНОГО КУРСА

ЛЕТАТЕЛЬНОГО АППАРАТА


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-16; Просмотров: 2470; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.095 с.)
Главная | Случайная страница | Обратная связь