Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Нейрохимические механизмы памяти.
Постоянное хранение инфо-и связано с химическими или структурными изменениями в мозгу. Практически все согласны с тем, что запоминание осуществляется посредством электрической активности, т.е. химические или структурные изменения в мозге должны каким-то образом влиять на электрическую активность. Если системы памяти являются результатом электрической активности, то, следовательно, мы имеем дело с нервными цепями, способными реализовать следы памяти. электрический импульс, переданный нейроном, проходит от тела клетки через аксон к телу следующей. Место, где аксон соприкасается со следующей клеткой, называется синапсом. На отдельном клеточном теле могут находиться тысячи синапсов. Существует 2 основных вида синапсов: возбудительные и тормозные. На уровне возбудительного синапса происходит передача возбуждения к следующему нейрону, и на уровне тормозного – она блокируется. Для того, чтобы произошел разряд нейрона, может потребоваться довольно большое число импульсов, одного импульса, как правило, недостаточно. Но для простоты анализа представим, что единственный нервный импульс, поступающий на возбудительный синапс, может вызвать ответ новой клетки. Простейшая цепь, обеспечивающая память, представляет собой замкнутую петлю. Возбуждение последовательно обходит весь круг и начинает новый. Такой процесс называется реверберацией. Поступающий сенсорный сигнал вызывает последовательность электрических импульсов, к. сохраняется неопределенно долгое время после того, как сигнал прекратится. Реверберирующая активность, вызванная сигналом, на самом деле не должна продолжаться бесконечно. Для кратковременной памяти должен существовать какой-то другой механизм. Что же приводит к прекращению реверберации? Во-первых, подлинная реверберирующая цепь должна быть гораздо сложнее. Группы клеток в действительности расположены значительно более сложным образом. Фоновая активность этих нейронов, а также воздействия со стороны многочисленных, внешних по отношению к данной петле входов, в конечном итоге, нарушают х-р циркуляции импульсов. Во-вторых – появление новых сигналов, к. могут активно затормозить предшествующую реверберирующую активность. В-третьих, не исключается возможность нек. ненадежности самих нейронных цепей, импульс, поступающий в одно звено цепи, не всегда может оказаться способным вызвать активность в следующем звене и, в конце концов, поток импульсов угасает. В-четвертых, вследствие к.-либо «хим.» утомления в нейронах и синапсах. Избирательная электрич. активация опр. нервной петли обеспечивает кратковременное запоминание. Многократная электрическая активность в нейронных цепях вызывает химические или структурные изменения в самих нейронах, что приводит к возникновению новых нейронных цепей. Это изменение цепи называется консолидацией. Консолидация следа происходит в продолжение длительного времени. В основе долговременной памяти лежит постоянство структуры нейронных цепей. Таким образом, кратковременная и долговременная память могут быть связаны с одними и теми же нервными элементами, с той разницей, что кратковременная память – это временная электрическая активность определенных нейронов, а долговременная память – постоянная структура тех же самых нейронов. Какие же механизмы участвуют в консолидации цепей памяти? Существуют 2 гипотезы. Первая: долговременная память заключена в структуре белковых молекул в каждом синапсе. И нервная информация переходит через синоптическую щель химическим путем. Согласно другой точке зрения долговременная память может быть результатом возникновения новых синапсов. Это означает, что всякий раз при заучивании нового материала в мозгу возникают физические изменения. Но микроскопической техникой эти изменения обнаружить не удается, в частности вследствие исключительной трудности наблюдения живых нервных клеток под микроскопом. Как бы ни происходило дело, ясно одно, что именно синапс является тем местом, где происходят перестройки. После того, как были открыты химические процессы, лежащие в основе наследственности, возникла мысль, что те же самые механизмы могли бы участвовать в процессах запоминания. Генетическая информация, особая для каждого организма, заключена в гигантских молекулах ДНК. Передача ее происходит при помощи молекулы другой нуклеиновой кислоты РНК. И поскольку ДНК содержит генетическую память для каждого индивидуального организма, логично предположить, что она или РНК может также передавать и приобретенный опыт. Инструкции для синтеза белка, переносимые молекулой РНК, заключены в специфической последовательности органических оснований, присоединенных к остову молекулы, именно они служат матрицами для синтеза белков. Различная последовательность приводит к синтезу разных белков. Можно предположить, что эта последовательность изменяется в результате опыта, приобретенного животными при обучении. Сейчас доказано, что обучение действительно оказывает влияние на РНК. Возникает вопрос: содержит ли измененная в результате обучения РНК информацию о х-ре возникшего навыка. Один из способов проверки: обучить животных выполнению определенной задачи, извлечь РНК из соответствующих частей нервной системы и попытаться использовать эту РНК для передачи полученных знаний другим животным. Это очень трудный путь. Учеными были получены очень противоречивые результаты. Опыты проводились на планариях (плоский червь). Если перерезать его пополам, то каждая половина регенерирует в целого червя. Сначала червя обучали выполнять какую-то задачу. Затем разрезали пополам, получая 2 идентичных животных. Когда половинки полностью регенерировали, приступали к проверке. Гипотеза заключалась в следующем: если память кодируется химически, то обе половины сохраняют задачу в памяти, если запоминание хранится в нервных связях – головных ганглиях, то животное, регенерировавшее из хвостовой части, не будет обладать соответствующими навыками. Под действием электрического тока планария рефлекторно сокращается. Если сочетать удар электрического тока с яркой вспышкой света, то животное начинает сокращаться, даже если вспышка не сопровождается электрическим раздражителем. Результат проверки показал, что после перерезания и генерирования обе половины «помнят» задачу. Этот результат поразителен. Ведь даже, если информация хранится в молекулах РНК, то каким образом она доходит до хвоста? То есть РНК, содержащая накопленную информацию, распространена у планарии по всему телу. Проводилось также множество химических исследований. Вводились различные фармакологические вещества в ситуации обучения, либо стимулирующие, либо подавляющие синтез белка. Эти исследования выявили нек. интересные аспекты функционирования памяти. Например, память легче всего нарушается под воздействием нек. веществ, вводимых вскоре после обучения. Чем больше интервал между обучением и введением вещества, тем большая доза требуется для стирания следов. Нормальное функционирование нервной системы зависит от тщательно регулируемой химической среды, но какие-либо надежные выводы делать пока еще рано. Наиболее волнующими экспериментами в последнее время были попытки перенести память одного животного к другому. Планарии охотно поедают друг друга. Если одну планарию обучить сокращаться на свет, размельчить и скормить другой, то опыт первого частично передается другому червю (опыт Д. Мак-Коннела). Это вызвало необычный интерес публики и скепсис науки. Ведь планария – относительно примитивный организм. Однако в 1966 г. Дж.Унгар провел опыты по переносу памяти у крыс и мышей. У крыс громкий звук вызывает вздрагивание. В течение 9 дней их приучали не вздрагивать. Затем необученным мышам вводили диализованный гомогенат мозга, взятый у обученных доноров, после чего проверяли их реакцию на звук. Мышам, получившим такую инъекцию, потребовалось 1–2 дня для подавления реакции испуга – поразительный результат, если учесть, что на подавление реакции испуга у мышей, не получивших инъекций, затрачивается больше времени, чем у крыс. В другом эксперименте одну группу животных приучали к громкому звуку, а другую – к обдуванию воздухом (тоже реакция вздрагивания). После инъекций у необученных животных появлялся перенос памяти в отношении лишь того воздействия, к к. был приучен донор. Однако окончательного ответа пока дать нельзя. Многие ученые довольно скептически относятся к подобным экспериментам. Если возможен перенос инфо-и, хранящийся в памяти мозга, то возникает много новых загадок относительно природы памяти. Это означало бы, что специфические следы памяти кодируются в химических веществах, к. могут свободно перемещаться в организме и передаваться от одного животного к другому, даже от крыс к мышам. 18. Роль Na*-Ka-нacoca, нуклеинового и белкового синтеза в процессах памяти. Этот насос обеспечивает проведение импульса по аксону. Если этот насос начинает работать хуже, то ухудшается взаимосвязь между клетками и сигнал не доходит до своей мишени. Нарушение этого насоса приводят к нарушению кратковременной, мгновенной памяти. Среди примеров активного транспорта против градиента концентрации лучше всего изучен Na-Ka насос. Во время его работы происходит перенос трех положительных ионов Na+ из клетки на каждые два положительных иона К в клетку. Эта работа сопровождается накоплением на мембране разности электрических потенциалов. При этом расщепляется АТФ, давая энергию. Предполагается, что натриевые и калиевые каналы соседствуют друг с другом. Связывание молекул " канального" белка с ионом натрия приводит к нарушению системы водородных связей, в результате чего меняется его форма. Первоначально этот переносчик, осуществляющий антипорт, присоединяет с внутренней стороны мембраны три иона Na+. Эти ионы изменяют конформацию активного центра АТФазы. После такой активации АТФаза способна гидролизовать одну молекулу АТФ, причем фосфат-ион фиксируется на поверхности переносчика с внутренней стороны мембраны. Выделившаяся энергия расходуется на изменение конформации АТФазы, после чего три иона Na+ и ион PO43-(фосфат) оказываются на внешней стороне мембраны. Здесь ионы Na+ отщепляются, а PO43- замещается на два иона К+. Затем конформация переносчика изменяется на первоначальную, и ионы К+ оказываются на внутренней стороне мембраны. Здесь ионы К+ отщепляются, и переносчик вновь готов к работе. Более кратко действия АТФазы можно описать так: 1) Она изнутри клетки «забирает» три иона Na+, затем расщепляет молекулу АТФ и присоединяет к себе фосфат 2) «Выбрасывает» ионы Na+ и присоединяет два иона K+ из внешней среды.3) Отсоединяет фосфат, два иона K+ выбрасывает внутрь клетки. В итоге во внеклеточной среде создается высокая концентрация ионов Na+, а внутри клетки — высокая концентрация K+. Работа Na+, K+ — АТФаза создает не только разность концентраций, но и разность зарядов (она работает как электрогенный насос). На внешней стороне мембраны создается положительный заряд, на внутренней — отрицательный. Нуклеиновый и белковый синтез необходим для процессов консолидации. Именно кратковременное ингибирование этого синтеза приведет к консолидации. Если подавление этого синтеза произошло, то те события, к. произошли до этого, в памяти сохранятся, а то, что должны были запомнить в этот момент, когда произошло подавление, - мы потеряем. Все молекулы нашего тела непрерывно разрушаются и образуются вновь. Точно так же и в мозгу 90% белков обновляются не более чем за две недели. «Шаблон», по к. в клетке синтезируется белок, - это РНК. Судя по результатам ряда исследований, у животных в процессе обучения, видимо, усиливается синтез РНК и белков. Для цыплят х-рна особая естественная форма научения - импритинг, или запечатление. Они запоминают первый движущийся объект, к. видят после того, как вылупились из яйца и начали ходить (обычно в первые 16 часов жизни), и начинают всюду следовать за ним. Движущийся предмет - это, как правило, их мать. В первые два часа после воздействия стимула, вызывающего импритинг, в мозгу цыпленка усиливается синтез белка. Чтобы исключить любое побочное воздействие, исследователи перерезали у цыпленка нервные пути, служащие для передачи зрительной инфо-и из одного полушария мозга в другое. Когда один глаз был закрыт и цыпленок воспринимал движущийся объект только другим глазом, скорость белкового синтеза была выше в той половине мозга, где происходил процесс запечатления. Роль этих только что синтезированных белков в процессе запоминания, как предполагают, состоит в том, что они по аксону транспортируются к синапсу и изменяют его структуру, делая ее хотя бы временно более эффективной. В таком случае подобное видоизменение и было бы физической основой научения. Исследования Г. Хидена показали, что образование следов памяти сопровождается изменениями свойств РНК и белка в нейронах. Раздражение в клетке вызывает длительные биохимические следы. Но в более поздних работах было показано, что в формировании энграм ведущую роль играет ДНК, к. может служить хранилищем не только генетической, но и приобретенной инфо-и, а РНК обеспечивает передачу. Популярное:
|
Последнее изменение этой страницы: 2016-03-25; Просмотров: 1659; Нарушение авторского права страницы