Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Ток смещения. Второе основное положение теории Максвелла: напишите математическое выражение в интегральной форме и дайте определение.



 

Согласно Максвеллу, если всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле , то должно существовать и обратное явление: всякое изменение электрического поля должно вызывать появление в окружающем пространстве вихревого магнитного поля .

 

Ток смещения введен Максвеллом для установления количественных

соотношений между изменяющимся электрическим полем и вызываемым им магнитным полем.

 

По Максвеллу, в цепи переменного тока, содержащей конденсатор, пере­менное электрическое поле в конденсаторе в каждый момент времени созда­ет такое магнитное поле, как если бы между обкладками конденсатора существовал ток смещения, равный току в подводящих проводах . Тогда можно утверждать, что токи проводимости (I) и смещения (I ) равны: I = I .

 

Ток проводимости вблизи обкладок конденсатора

;

(поверхностная плотность заряда о на обкладках равна электри­ческому смещению в конденсаторе).

Сила тока сквозь произвольную поверхность S может быть определена как поток вектора плотности тока:

 

;

 

-плотность тока смещения.

 

 

Тема 14. Вопрос 3.

 

Система уравнений электронной теории Максвелла. Поясните, что нового внес Максвелл в ранее известные законы электричества и магнетизма.


Источниками электрического поля могут быть либо электрические

заряды, либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическими токами), либо переменными электрическими полями. Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных.

 

Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле, всегда связана с порождаемым им магнитным, т. е. электрическое и магнитное поле неразрывно связаны друг с другом—они образуют единое электромагнитное поле.

 

Тема 15. Вопрос 1.

Свободные (собственные) колебания - это колебания, которые происходят в системе после того, как она была выведена из положения равновесия и предоставлена самой себе. Вынужденные колебания происходят в системе, на которую действует внешняя периодически изменяющаяся сила.

Простейший вид колебаний - это гармонические колебания, при которых смещение x, скорость v и другие характеристики колебания изменяются по закону синуса или - косинуса. Любые колебания возникают в системе, если в ней действует возвращающая сила. Если возвращающая пропорциональна смещению F=kx колебания будут гармоническими. Если эта сила имеет

электромагнитную природу, она называется упругой. Если природа силы иная, ее называют квазиупругой. Общее дифференциальное уравнение свободных гармонических колебаний

имеет вид:

Фактически - это II закон Ньютона, что будет ясно из дальнейших примеров.

x-смещение точки от положения равновесия.

- ускорение колеблющейся точки

ω (рад/с) циклическая (круговая) частота колебаний.

Решение этого дифференциального уравнения можно записать как

смещение точки от положения равновесия  

Учитывая, что скорость υ = dx/dt и ускорение a = dυ /dt и F = -kx, можно получить:

скорость, колеблющейся точки и ее амплитуда (максимальное значение)
ускорение колеблющейся точки и его амплитуда (максимальное значение)
возвращающая сила
φ - фаза колебания - это не угол, а аргумент, от которого зависит функция смещения x и другие характеристики; φ о - начальная фаза (при t = 0)
v (Гц = 1/с) - частота колебаний - это число колебаний за 1 секунду, T (сек) - период колебаний - это время одного полного колебания, N - полное число колебаний, совершенных точкой за, время t.
амплитуда колебаний; хо - начальное смещение, υ 0 -начальная скорость точки; если υ 00, амплитуда колебаний будет больше начального смещения.
путь, пройденный колеблющейся точкой, N- число полных колебаний, А - амплитуда, t - время колебаний, T-период колебаний

Тема 15. Вопрос 2.

 

Пружинный маятник. Это система, состоящая из небольшого тела, подвешенного на легкой пружине и совершающего вертикальные колебания.

  II закон Ньютона, сравнивая с найдем циклическую частоту и период колебаний  
В данном случае возвращающая сила - это упругая сила электромагнитной природы, т.е. сила, обусловленная взаимодействием молекул пружины. Выражения для смещения, скорости, ускорения тела - см. ранее.

 

 

Тема 15. Вопрос 3.

Математический маятник. Это тело, подвешенное на легкой нити, размерами которого можно пренебречь по сравнению с длиной нити. Запишем II закон Ньютона в проекции на касательное к траектории (окружности) направление: ma, = - mg sin(a), - тангенциальное ускорение. Это уравнение является уравнением колебаний, но не гармонических и имеет более сложно решение, чем . Мы рассмотрим только случай малых углов α . При малых углах sin(a) ≡ a ≡ x/l, где l-длина нити.

 

II закон Ньютона; сравнивая c , найдем циклическую частоту и период колебаний.  
В данном случае возвращающая сила - это составляющая силы тяжести, т.е. сила гравитационной природы, а т.к. при малых углах она пропорциональна смещению, ее можно назвать квазиупругой.

 

Тема 15. Вопрос 4.

 

Физический маятник. Это любое твердое тело, способное совершать колебания относительно неподвижной точки, не совпадающей с его центром тяжести. Если маятник отклонить от положения равновесия, то возникнет возвращающий момент, создаваемый составляющей силы тяжести mg∙ sin(α )иравный mg∙ sin(a)∙ d, где d- плечо силы (см. рис.). Данное тело может совершать только вращательное движение, поэтому II закон Ньютона будет иметь вид: Iε = -mgd; где I - момент инерции тела, а ε - угловое ускорение. Это уравнение колебаний, но не гармонических. Однако при малых углах оно приобретает вид , т.е. дифференциального уравнении гармонических колебаний. При малых углах sin(a) ≡ a ≡ x/d

d - расстояние от точка подвеса до центра тяжести.

угловое ускорение II закон Ньютона круговая частота и период колебаний физического маятника
уравнение гармонических колебаний
  приведенная длина физического маятника. Если взять нить длиной и подвесить к ней небольшое тело, получим математический маятник, период колебаний которого будет равен периоду колебаний физического маятника.
         

 

Тема 15. Вопрос 5.

смещение точки от положения равновесия

 

скорость, колеблющейся точки и ее амплитуда (максимальное значение)

ускорение колеблющейся точки и его амплитуда (максимальное значение)

Тема 15. Вопрос 6.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-26; Просмотров: 713; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.016 с.)
Главная | Случайная страница | Обратная связь