Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


С центробежными нагнетателями



Компрессорные станции с центробежными нагнетателями достаточно разнообразны по своим технологическим схемам. Объясняется это, главным образом, широким перечнем типоразмеров ГПА, используемых на подобных станциях – здесь могут быть агрегаты с полнонапорными или неполнонапорными нагнетателями, с электродвигателями либо с газотурбинными установками различного исполнения.

В сочетании с различными вариантами дополнительных функций, возлагаемых на КС, перечисленное порождает достаточное число разновидностей технологических схем КС с центробежными нагнетателями. Однако в большинстве случаев эти схемы не имеют между собой существенных различий и сводятся, по сути, к одному типовому виду, приведённому на рис. 5.1.

Функционирование КС со схемой, изображенной на рис. 5.1 осуществляется следующим образом.

Газ от узла подключения станции к газопроводу УП поступает на вход КС через кран №7 и проходит на установку очистки газа УО, где очищается от механических примесей в пылеуловителях П. Затем основная часть очищенного газа направляется в компрессорный цех КЦ для компримирования, а другая, меньшая, – отбирается на установку подготовки газа (УПГ). УПГ предназначена для подготовки: пускового (ГП) и топливного (ГТ) газа ГТУ, импульсного газа (ГИ), используемого для перестановки кранов КС, а также для редуцирования газа, предназначенного прочим местным потребителям (ГСН).

После сжатия в компрессорном цехе газ подаётся на установку охлаждения УХ, состоящую из параллельно соединённых аппаратов воздушного охлаждения АВО, затем через кран №8 и узел подключения КС к газопроводу возвращается в магистраль.

Приведённая на рис. 5.1 технологическая схема КС является самой общей. Она может дополняться различными элементами в зависимости от конкретных обстоятельств. К таковым, как отмечалось выше, могут относится: вид используемых на КС нагнетателей, тип привода нагнетателей, принятое на станции количество ступеней очистки газа от механических примесей и т. д.

Из всего перечисленного на технологическую схему КС наибольшее влияние оказывает вид установленных на станции нагнетателей. Это влияние ограничивается преимущественно компрессорным цехом станции (см. раздел 5.2.1).

 

Рис. 5.1. Технологическая схема КС с центробежными нагнетателями

 

Количество ступеней очистки газа изменяет общую схему станции так же локально, только в части установки очистки газа УО. При одноступенчатой очистке газа технологическая схема УО имеет вид, изображённый на рис. 5.1; при двухступенчатой – после пылеуловителей П на УО размещаются фильтры-сепараторы, соединённые между собой параллельно и составляющие вторую ступень очистки газа.

В значительной меньшей мере технологическая схема КС зависит от типа привода нагнетателей. Тип привода определяет лишь масштабы установки подготовки газа УПГ. При газотурбинном приводе нагнетателей УПГ наиболее весома по своим функциям и размерам. Данному случаю отвечает технологическая схема КС, приведённая на рис. 5.1. Когда на станции используется электропривод, на УПГ отсутствуют устройства по подготовке топливного и пускового газа, а на схеме КС не предусматриваются соответствующие трубопроводы.

Помимо рассмотренных, наиболее значимых различий технологические схемы компрессорных станций могут иметь достаточно большое количество мелких расхождений друг с другом.

Например, нормами технологического проектирования ОНТП 51-1-85 на всех проектируемых и строящихся КС предусматривается использовать одну общую установку охлаждения газа УХ, как это показано на рис. 5.1. На ряде ранее сооружённых станций, возведённых ещё по старым нормам, данная установка выполнена раздельной, состоящей из нескольких автономных друг от друга групп АВО. На некоторых станциях АВО вообще отсутствует.

Одним из отличий технологических схем может быть применение на мощных КС двух ниток трубопроводов вместо одной (рис. 5.1) для соединения компрессорных цехов с магистральным трубопроводом. К двухниточному варианту прибегают для снижения скорости движения газа в трубопроводах и уменьшения сопротивления коммуникаций КС.

Нагнетательные коммуникации компрессорного цеха могут быть многониточными и по другим причинам. Например, при использовании на КС нескольких групп неполнонапорных нагнетателей (см. раздел 5.2.2).

Достаточно большое количество изменений в типовую схему компрессорных станций вносится в результате рационализаторских разработок. Нововведения возникают из-за необходимости учёта особенностей работы конкретных станций, которые трудно учесть в одном варианте схемы.

На типовой технологической схеме КС, приведённой на рис. 5.1 использована единая нумерация основных технологических кранов КС , принятая в системе газовой промышленности России. Согласно данной нумерации все краны на площадке КС разбиты на две группы – обще станционные краны и краны обвязки нагнетателей.

К общестанционным кранам относятся краны узла подключения станции к магистральному газопроводу (№7, №17, №8, №18, №19, №20, №21) и краны большого или пускового контура компрессорной станции (№36 и №36р).

Краны обвязки нагнетателей относятся к объектам компрессорного цеха, который на рис. 5.1 изображён условно. Состав объектов КЦ и подробное рассмотрение их приведены в разделе 5.2.

Краны №19 и №21 узла подключения КС к магистрали являются охранными (входной охранный и выходной охранный соответственно), нормальное положение их открытое. Данные краны предназначены для отключения от магистрали участка газопровода, непосредственно примыкающего к КС, в случае аварии на станции. В частности, при аварии на узле подключения КС. Кран №20 называется секущим, нормальное положение его при работающей станции – закрытое. При отключении всей КС кран №20 открывается (№7 и №8 закрываются), и газ движется по магистрали, минуя станцию. Краны №17 и №18 свечные. Они служат для сброса в атмосферу газа из всех трубопроводов КС при остановках станции и при продувках коммуникаций КС при заполнении их газом.

Краны №7 и №8, служащие для отключения КС от магистрали, имеют обводные линии с дросселями. Обводные линии выполняются диаметром, меньшим диаметра основного трубопровода с кранами №7 и №8, и служат для выравнивания давления по обе стороны основных кранов перед их открытием. Это облегчает открытие данных кранов и предотвращает гидравлический удар, который имел бы место при резком открытии запорной арматуры №7 и №8 с большим проходным сечением. Для сглаживания скачка давления и предотвращения гидроудара при открытии кранов на обводных линиях последние оснащаются дросселями, создающими потоку газа дополнительное гидросопротивление.

Следующие по ходу рассмотрения общестанционные краны №36 и №36р установлены на перемычке между входным и выходным газопроводами КС. Перемычка составляет элемент большого или пускового контура КС, который ещё называется «станционным кольцом»; с помощью перемычки можно часть газа перемещать с выхода станции на её вход.

Большой контур КС, включающий в себя краны №36 и №36р, предназначен для трёх целей:

· для осуществления плавной загрузки и разгрузки ГПА при их пусках и остановках;

· для регулирования режима работы КС методом перепуска;

· для предотвращения у центробежных нагнетателей помпажа и вывода нагнетателей из режима помпажа.

Пуск любой машины сопряжен с преодолением инерции её находящихся в покое подвижных частей и с приложением к машине значительных пусковых усилий. Это влечёт за собой, с одной стороны, повышенный расход энергии на пуск, с другой – дополнительный износ оборудования.

Для облегчения пусков и снижения износа агрегаты пускают в работу постепенно с минимальной загрузкой их по мощности. Минимум загрузки обеспечивается при малых производительностях нагнетателя (см. рис. 5.2.), которые в условиях КС достигаются работой агрегатов на «станционное кольцо» через приоткрытый кран №36р.

Кран №36р – регулирующий. Он в отличие от прочих кранов КС, имеющих всего два положения («открыт» или «закрыт»), может занимать промежуточные позиции и таким образом осуществить пропуск газа через «станционное кольцо» с дросселированием потока в данном кольце.

После пуска ГПА, по мере набора его ротором частоты вращения и мощности, кран №36р постепенно все более открывается и загрузка агрегата по мощности также постепенно возрастает. При наборе ГПА необходимых оборотов и принятии агрегатов полной загрузки по мощности ГПА переводится с «кольца» на работу в магистраль через кран №8.

Кран №36р используется также при остановках ГПА для предотвращения образования в конструктивных элементах агрегатов чрезмерных напряжений от резкой их разгрузки.

Постепенность снятия нагрузки с ГПА осуществляется переводом агрегатов, перед их отключением, из режима работы «на магистраль» в режим работы «на кольцо» в порядке, обратном последовательности действий, производимых при пуске ГПА.

Кран №36р имеет дистанционное управление с главного щита компрессорной станции.

Предотвращение помпажа центробежного нагнетателя и вывод нагнетателя из режима помпажа осуществляется с помощью крана №36. Помпаж, как известно, возникает в том случае, когда происходит уменьшение объёмного расхода газа через нагнетатель и этот расход становится меньше некоторого критического значения Qкр. Для выведения нагнетателя из помпажа необходимо увеличить расход газа через компрессорную машину.

 

 


На компрессорных станциях магистральных газопроводов увеличение расхода через нагнетатель осуществляется открытием крана №36 и переводом нагнетателя из режима работы «на магистраль» в режим работы «магистраль плюс станционное кольцо». Суть происходящих при этом процессов и их влияние на вывод нагнетателя из помпажа рассмотрим на примере.

В качестве примера возьмём простейший случай. Допустим, компрессорный цех КЦ оснащён только одним нагнетателем с характеристикой 1, приведённой на рис. 5.3. В исходном режиме нагнетатель работал на магистральный газопровод с характеристикой 2 при закрытых кранах №36 и №36р. Согласно рабочей точке Мо рассматриваемой системы производительность нагнетателя составляла Qо, а его степень сжатия – eо.

В некоторый момент времени объёмный расход газа через нагнетатель сократился до Q1 < Qкр, что вызвало помпаж. На него среагировали датчики системы автоматики.

По сигналу датчиков происходит автоматическое открытие крана №36, и газ с выхода нагнетателя поступает не только в магистральный трубопровод, но и в «станционное кольцо» с характеристикой 3. Теперь нагнетатель ведёт перекачку газа по двум трубопроводам, соединённым между собой параллельно. Эти трубопроводы составляют единую систему с характеристикой, соответствующей сумме характеристик 2 и 3.

Поскольку магистраль и «станционное кольцо» соединены между собой параллельно, то суммирование характеристик 2 и 3 необходимо проводить по подаче Q при постоянных значениях степени сжатия e. Выполненное таким образом сложение даёт суммарную характеристику системы (2+3), на которую работает нагнетатель в новых условиях.

С открытием крана №36 рабочая точка нагнетателя, согласно вышерассмотренному, перемещается из положения М0 в положение М – расход газа через компрессорную машину увеличивается с Q1 до Q > Qкр, и агрегат выходит из помпажа.

Нетрудно заметить, что вывод нагнетателя из помпажа приведённым выше способом сопряжён с повышением производительности ГПА и, следовательно, с увеличением потребляемой агрегатной мощности от (Ni/Pв)0 до (Ni / Pв) > (Ni / Pв)о (см. рис. 5.3). При существенном различии между (Ni /Pв) и (Ni / Pв)о может возникнуть перегрузка ГПА по мощности и его автоматическое отключение. Для предотвращения этого на перемычке, содержащей краны №36 и №36р, установлен дроссель «Д», который ограничивает пропускную способность трубопровода с «Д», создавая в нём дополнительное сопротивление.

Дроссель «Д» регулируемый. Необходимая степень его приоткрытия определяется опытным путём в ходе пуско-наладочных работ на КС.

Последний элемент общестанционной арматуры, который следует рассмотреть, – обратный клапан перед краном №8. Данный клапан предотвращает переток газа из магистрали на выход нагнетателей в случае отключения КС при неисправном кране №8, а также при переводе компрессорной станции на «станционное кольцо» при пусках и остановках КС, при регулировании режима работы станции перепуском и при выводе КС из помпажа.

Переток газа из магистрали на выход нагнетателей опасен тем, что он может вызвать обратную раскрутку роторов нагнетателей и ГПА, а это приводит к тяжёлым последствиям.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-04-10; Просмотров: 1190; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.017 с.)
Главная | Случайная страница | Обратная связь