Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Паровая конверсия природного газа / метана



Паровая конверсия природного газа / метана

В настоящее время данным способом производится примерно половина всего водорода. Водяной пар при температуре 700—1000 °С смешивается с метаном под давлением в присутствии катализатора. Себестоимость процесса $2—5 за килограмм водорода. В будущем возможно снижение цены до $2—2, 50, включая доставку и хранение.

Газификация угля.

Старейший способ получения водорода. Уголь нагревают при температуре 800—1300 °С без доступа воздуха. Первый газогенератор был построен в Великобритании в 40-х годах XIX века. США предполагают построить электростанцию по проекту FutureGen, которая будет работать на продуктах газификации угля. Впервые о планах подобного строительства заявил еще в 2003 году министр энергетики США Спенсер Абрахам. Электричество будут вырабатывать топливные элементы, используя в качестве горючего водород, получающийся в процессе газификации угля.

В декабре 2007 г. была определена площадка для строительства первой пилотной электростанции проекта FutureGen. В Иллинойсе будет построена электростанция мощностью 275 МВт. Общая стоимость проекта $1, 2 млрд. На электростанции будет улавливаться и храниться до 90 % СО2.

Аналогичный проект под названием «GreenGen» создан в Китае. Строительство первой очереди электростанции мощностью 250 МВт начнётся в 2008 г. Общая мощность электростанции составит 650 МВт.

Себестоимость процесса $2—2, 5 за килограмм водорода. В будущем возможно снижение цены до $1, 50, включая доставку и хранение.

Из атомной энергии.

Использование атомной энергии для производства водорода возможно в различных процессах: химических, электролиз воды, высокотемпературный электролиз. Себестоимость процесса $2, 33 за килограмм водорода. Ведутся работы по созданию атомных электростанций следующего поколения. Исследовательская лаборатория INEEL (Idaho National Engineering Environmental Laboratory) (США) прогнозирует, что один энергоблок атомной электростанции следующего поколения будет производить ежедневно водород, эквивалентный 750 тыс. литров бензина.

Электролиз воды.

H2O+энергия = 2H2+O2. Обратная реакция происходит в топливном элементе. Себестоимость процесса $6—7 за килограмм водорода при использовании электричества из промышленной сети. В будущем возможно снижение до $4 за килограмм.

$7—11 за килограмм водорода при использовании электричества, получаемого от ветрогенераторов. В будущем возможно снижение до $3 за килограмм.

$10—30 за килограмм водорода при использовании солнечной энергии. В будущем возможно снижение до $3—4 за килограмм.

Водород из биомассы.

Водород из биомассы получается термохимическим или биохимическим способом. При термохимическом методе биомассу нагревают без доступа кислорода до температуры 500—800 °С (для отходов древесины), что намного ниже температуры процесса газификации угля. В результате процесса выделяется H2, CO и CH4.

Себестоимость процесса $5—7 за килограмм водорода. В будущем возможно снижение до $1, 0—3, 0.

В биохимическом процессе водород вырабатывают различные бактерии, например, Rodobacter speriodes.

Полная статья Производство водорода

Снижение цены водорода возможно при строительстве инфраструктуры по доставке и хранению водорода. В США действует 750 километров, а в Европе — 1500 километров водородных трубопроводных систем. Трубопроводы действуют при давлении 10—20 бар, изготовлены из стальных труб диаметром 25—30 см. Старейший водородный трубопровод действует в районе германского Рура. 210 километров трубопровода соединяют 18 производителей и потребителей водорода. Трубопровод действует более 50 лет без аварий. Самый длинный трубопровод длиной 400 километров проложен между Францией и Бельгией.

После небольших изменений водород может передаваться по существующим газопроводам природного газа.

Водород в настоящее время, в основном, применяется в технологических процессах производства бензина и для производства аммиака. США ежегодно производят около 11 миллионов тонн водорода, что достаточно для годового потребления примерно 35—40 миллионов автомобилей.

Департамент Энергетики США (DoE) прогнозирует, что стоимость водорода сравняется со стоимостью бензина к 2015 году.

[править] Малые стационарные приложения

Производство электрической и тепловой энергии в топливных элементах мощностью от 0, 75 кВт до 10 кВт.

Домашние энергетические станции имеют мощность 0, 75—1 кВт, предназначены для выработки электроэнергии в течение 8 часов в сутки и выработки тепла и горячей воды 24 часа в сутки. Установки мощностью 5 кВт предназначаются для нескольких коттеджей. Они зачастую предназначаются только для выработки электроэнергии.

Популярность малых домашних комбинированных (электричество + тепло) установок связана с тем, что они имеют высокий КПД, малые выбросы СО2, легко могут быть встроены в существующую инфраструктуру. Такая энергетическая установка занимает размер не больше домашнего бойлера, может работать на природном газе.

В 2005 году во всём мире было установлено более 900 новых малых стационарных водородных энергетических установок (На 30 % больше, чем в 2004 году). За 2006 год во всём мире установлено около 1500 новых малых энергетических станций. В конце 2006 года во всём мире эксплуатировалось около 5000 малых стационарных водородных электростанций.

Технологии

Доминируют две технологии: PEM (протон-обменная) и SOFC (твёрдо-оксидная). Около 75 % установок в 2005 году были изготовлены по PEM технологии, около 25 % — SOFC.

Топливо

Большая часть домашних станций разработана для применения природного газа, пропана, очень немногие могут работать со сжиженным нефтяным газом (LPG). Многие производители работают с керосином.

Перспективы

В 2006, как и в 2005 году большая часть малых приложений была установлена в Японии. Японская NEF (New Energy Foundation) объявила о начале многолетнего демонстрационного проекта применения малых стационарных топливных элементов. Будет субсидирована установка 6400 топливных элементов. В 2005 году стоимость 1 кВт водородной бытовой станции в Японии составляла 10 млн ¥ (примерно $87 000), работы по ее установке стоили еще 1 млн ¥. К середине 2008 года в Японии было установлено около 3000 бытовых энергетических установок на водородных топливных элементах, а их стоимость снизилась до 2 млн ¥ (примерно $19 000)[2].

Япония уже имеет опыт использования подобных программ. В 1994 году была принята программа развития солнечной энергетики. Японское правительство ежегодно вкладывало $115 млн в установку фотоэлектрических элементов на крышах домов. С тех пор установленные мощности солнечной энергетики выросли в 35 раз. Средняя стоимость фотоэлектрических элементов снизилась на 75 %.

Компании — основные производители:

Компания Страна Технология Мощность установки
Ballard Power Systems Канада PEMFC 1 кВт. Через совместное предпрятие Ebara Ballard контролирует около 40 % рынка Японии домашних приложений
Acumentrics США SOFC 2—10 кВт
Ceramic Fuel Cells Австралия — Великобритания SOFC 1 кВт. Общий КПД более 80 %
Cosmo Oil Япония PEMFC 0, 7 кВт
European Fuel Cells Германия PEMFC 1, 5 кВт
Fuel Cell Technologies США SOFC 5 кВт.
Hitachi Zosen Япония - от 10 кВт до сотен кВт. КПД 86 %
Idatech США - 3—15 кВт. UPS для промышленных, телекоммуникационных, электронных приложений.
Idemitsu Kosan Япония - 1—5 кВт
Kyocera Япония SOFC 1 кВт
Mitsubishi Heavy Industries Япония PEMFC 10 кВт
Nippon Oil Corporation Япония технологии Ebara Ballard 1—6—10кВт. Планирует к 2013 году ежегодно продавать 100 тыс. бытовых систем
Plug Power США] PEMFC 5 кВт
Sanyo Electric Япония PEMFC 1 кВт. Общий КПД 92 % при производстве тепловой и электрической энергии
Shanghai-Shen Li Китай PEMFC 3—10 кВт
Sharp Corporation Япония PEMFC 10 кВт. Гибридные системы, совмещенные с фотоэлектрическими элементами
Toyota Motor Corporation совместно с Aishin Seiki Япония PEMFC В 2006 году начали испытания нескольких установок мощностью 1 кВт. КПД 90%.
Panasonic (Matsushita Electric Industrial Co) Япония PEMFC 0, 5—1 кВт. Планирует продавать 700 тысяч установок в год к 2020 году.[3]

и др.

[править] Стационарные применения

Подводная лодка класса U212 (Германия) с силовой установкой на водородных топливных элементах.

Производство электрической и тепловой энергии в топливных элементах мощностью более 10 кВт.

К концу 2006 года во всём мире было установлено более 800 стационарных энергетических установок на топливных элементах мощностью более 10 кВт. Их суммарная мощность — около 100 МВт. За 2006 год построено более 50 установок суммарной мощностью более 18 МВт.

Технологии

В 2005 году среди новых установок лидировали Расплавные Карбонатные Топливные Элементы (MCFC). На втором месте по числу новых установок были Фосфорнокислые технологии (PAFC). Протонобменные технологии (PMFC) применялись, в основном, в установках мощностью до 10 кВт и в автомобильных приложениях.

Топливо

Хотя большая часть стационарных топливных элементов в настоящее время работает на природном газе, всё большее количество установок работают с альтернативными видами топлив. В 2005 году усилился тренд применения сингаза и биогаза. В 2005 году биогаз вышел на второе место после природного газа. В 2005 году были построены электростанции (Япония, Германия), работающие на биогазе, получаемом из древесных отходов, пластика, муниципальных сточных вод. Водород и керосин и в будущем будут занимать значительную долю в нише малых стационарных установок мощностью более 10 кВт.

Финансирование

В 2005 году в США был принят Энергетический Билль. Билль предусматривает 30 % инвестиционные налоговые кредиты до уровня $1000 за кВт установленной мощности. Налоговые кредиты будут выдаваться с 1 января 2006 по 1 января 2008. В Японии и Ю. Корее субсидируются не конкретные проекты, а стоимость электроэнергии, выработанной топливными элементами в размере $0, 015—0, 02 за кВт·ч.

Планируется строительство

  • Водородное шоссе (Калифорния) — К 2010 году 200 заправочных станций на главных шоссе штата.
  • Hi Way Initiative — водородное шоссе в штате Нью-Йорк (США).
  • Водородный коридор (Канада) — 900 км водородного коридора вдоль главных дорог между Монреалем и Виндзором.
  • HyNor (Норвегия) — водородное шоссе между городами Осло и Stavanger (580 км) до 2008 года.
  • 2H2 — водородное шоссе Иллинойса.
  • SINERGY — Сингапурская энергетическая программа
  • The Northern H (Канада, США) — К 2010 году планируется соединить заправочными станциями крупные города вдоль главных торговых путей Манитобы (Канада), Дакоты, Миннесоты, Айовы и Висконсина.
  • New York Hydrogen Network: H2-NET (США) — 20 заправочных станций между Нью-Йорком и Буффало (штат Нью-Йорк).

General Motors заявлял о возможных планах строительства 12000 водородных заправочных станций в городах США и вдоль главных автострад. Стоимость проекта компания оценивает в $12 млрд.

Компании — основные игроки

Mercedes Benz Citaro на водородных топливных элементах в Лондоне

Производители водорода:

  • Praxair
  • Air Liquide
  • BOC Group
  • Iwatani International (производит 40 % водорода в Японии)
  • Linde (Германия)

Ёмкости для хранения водорода:

  • ECD Ovonics
  • HERA Hydrogen Storage Systems
  • Dynetek
  • Millennium Cell

Оборудование для производства водорода:

  • ChevronTexaco
  • H2Gen
  • Hydro
  • Hydrogenics
  • HyRadix

BP — ключевой игрок в демонстрационных водородных проектах по всему миру.

Автомобильный транспорт

В 2006 году было запущено в эксплуатацию около 100 новых автомобилей, автобусов, мотоциклов и т. д. на топливных элементах. К концу 2007 году в мире будет эксплуатироваться около 900 транспортных средств.

В автомобильных приложениях преобладают PEM технологии. В 2005 году был изготовлен всего один автомобиль с PAFC топливным элементом — остальные на PEM технологиях.

Разработчики смогли снизить стоимость автомобильных водородных топливных элементов с $275 за кВт мощности в 2002 году до $110 за кВт в 2005. Департамент Энергетики США (DoE) планирует снизить стоимость до $30 за кВт мощности к 2020 году.

Планы автопроизводителей

Компания Страна год количество автомобилей планы
Daimler Германия - начало производства Mercedes B-class
Ford США - коммерческая готовность
GM США 2010-2015 - коммерческая готовность
GM США - массовый рынок
Honda Япония - начало продаж в Калифорнии автомобиля Honda FCX
Honda Япония 12000 (в США) начало производства
Honda Япония 50000 (в США) производство
Hyundai Motor Корея - начало продаж[4]
Toyota Япония - снижение цены до $50000
Fiat Италия 2020-2025 - полная коммерциализация
SAIC Китай коммерческая готовность
Shanghai VW Китай — Германия - начало производства Lingyu[5]

В марте 2006 года германский HyWays проект опубликовал прогнозы проникновения водородного автотранспорта на европейский рынок.

Сценарий
Высокое проникновение 3, 3 % 23, 7 % 54, 4 % 74, 5 %
Низкое проникновение 0, 7 % 7, 6 % 22, 6 % 40, 0 %

Таблица: прогноз проникновения водородного автотранспорта на европейский рынок в % от общего количества автомобилей.

Воздушный транспорт

Корпорация Boeing прогнозирует, что топливные элементы постепенно заменят в авиации вспомогательные энергетические установки. Они смогут генерировать электроэнергию, когда самолет находится на земле, и быть источниками бесперебойного питания в воздухе. Топливные элементы будут постепенно устанавливаться на новое поколение Боингов 7E7, начиная с 2008 года.

Железнодорожный транспорт

Для данных приложений требуется большая мощность, а размеры силовой установки имеют малое значение.

Железно-Дорожный исследовательский технологический институт (Япония) планирует запустить поезд на водородных топливных элементах в эксплуатацию к 2010 году. Поезд сможет развивать скорость 120 км/ч, и проезжать 300—400 км без заправки. Прототип был испытан в феврале 2005 года.

В США с 2003 года разрабатывается локомотив массой 109 тонн с водородным топливным элементом мощностью 1 МВт.

Водный транспорт

В Германии производятся подводные лодки класса U-212 с топливными элементами производства Siemens AG. U-212 стоят на вооружении Германии, поступили заказы из Греции, Италии, Кореи, Израиля. Под водой лодка работает на водороде и практически не производит шумов.

В США поставки SOFC топливных элементов для подводных лодок могут начаться в 2006 году. Компания FuelCell Energy разрабатывает 625 кВт топливные элементы для военных кораблей.

Японская подводная лодка Urashima с топливными элементами PEMFC производства Mitsubishi Heavy Industries была испытана в августе 2003 года.

Складские погрузчики

Чуть менее половины новых топливных элементов, установленных в 2006 году на транспортные средства, были установлены на складские погрузчики. Замена аккумуляторных батарей на топливные элементы позволит значительно сократить площади, занимаемые аккумуляторными цехами. Wal-Mart в январе 2007 года завершил вторую серию испытаний складских погрузчиков на топливных элементах.

Технологии

В портативных и электронных приложениях доминируют PEM и DMFC топливные элементы.

[править] Водородная энергетика в России

В 2003 компания «Норильский никель» и Российская академия наук подписали соглашение о ведении научно-исследовательских работ в сфере водородной энергетики. «Норильский никель» вложил в исследования 40 млн долларов.

В 2005 «Норильский никель» основал инновационную компанию «Новые энергетические проекты», задачей которой является разработка и внедрение топливных элементов.

В 2006 «Норильский никель» приобрел контрольный пакет американской инновационной компании Plug Power, являющейся одним из лидеров в сфере разработок, связанных с водородной энергетикой.

Предполагается, что на основе российских и американских разработок с 2008 начнётся производство водородных энергетических установок в России. «Норильский никель» и компания «Интеррос» планировали начать строительство соответствующего завода в 2007 ([2]).

Глава «Норильского никеля» Михаил Прохоров заявил в феврале 2007 года, что компания вложила в разработку водородных установок $70 млн и уже есть «не просто лабораторные, а действующие образцы», на внедрение которых уйдёт несколько лет. Начало промышленной реализации «водородного проекта», по его словам, намечено на 2008 год.[6]

[править] Итоги 2008 года

[править] Стационарные приложения

В июне 2008 года компания Matsushita Electric Industrial Co Ltd (Panasonic) начала производство в Японии водородных топливных элементов. Компания планирует продать к 2015 году 200 тысяч бытовых энергетических систем на водородных топливных элементах[7].

В сентябре корейская компания POSCO завершила строительство завода по производству стационарных энергетических установок на водородных топливных элементах. Мощность завода 50 МВт. оборудования в год[8].

[править] Мобильные приложения

В октябре 2008 года продажи DMFC установок компании германской Smart Fuel Cell AG для домов на колёсах достигли 10 000 штук. Мощность установок от 0, 6 кВт. до 1, 6 кВт. В качестве топлива используется метанол. Канистры с метанолом продаются 800 магазинах Европы[9].

[править] Транспорт

Первые лётные испытания установки для бортового питания на водородных топливных элементах мощностью 20 кВт. проведены команией Airbus в феврале 2008 года на самолёте Airbus A320 [10].

В марте 2008 года во время экспедиции STS-123 шаттла Endeavour топливные элементы производства компании UTC Power преодолели рубеж в 100 тысяч операционных часов в космосе[11]. Водородные топливные элементы производят энергию на борту шаттлов с 1981 года.

3 апреля 2008 года компания Boeing провёла лётные испытания лёгкого двухместного самолёта Dimona с силовой установкой на водородных топливных элементах[12].

[править] Автомобили

Компания Mercedes в марте 2008 года завершила зимние испытания автомобиля B-Class с силовой установкой на водородных топливных элементах[13].

Шанхайская компания Shanghai Volkswagen Automotive Company для Олимпийских игр в Пекине поставила 20 легковых автомобилей с силовой установкой на водородных топливных элементах[14].

В августе 2008 года в США состоялся демонстрационный пробег водородных автомобилей. Автомобили компаний BMW, Daimler, General Motors, Honda, Nissan, Toyota, Hyundai и Volkswagen за 13 дней преодолели 7000 км [15].

Компания Honda начала продажи в лизинг автомобиля Honda FCX Clarity в США летом 2008 года[16]. В Японии — в ноябре 2008 года[17].

[править] Производство водорода

В декабре германский институт Deutsches Zentrum fü r Luft- und Raumfahrt (DLR) завершил строительство пилотной установки по производству водорода из воды в солнечных концентраторах. Мощность установки 100 кВт[18].

Разрабатывались технологии производства водорода из мусора, этанола, металлургического шлака[19], биомассы[20] и другие технологии.

[править] Деятельность правительств

Правительства различных стран приняли планы развития водородной энергетики. Например:

[править] Южная Корея

Министерство Коммерции, Индустрии и Экономики Ю. Кореи в 2005 году приняло план строительства водородной экономики к 2040 году. Цель — производить на топливных элементах 22 % всей энергии и 23 % электричества, потребляемого частным сектором. Если цели плана будут выполнены, Ю. Корея будет производить из водорода 8 % ВВП страны к 2040 году. Будет создан миллион новых рабочих мест, выбросы CO2 сократятся на 20 %.[источник? ]

[править] Индия

В Индии создан Индийский Национальный Комитет Водородной Энергетики. В 2005 году комитет разработал «Национальный План Водородной Энергетики». Планом предусмотрены инвестиции в размере 250 млрд рупий (примерно $5, 6 млрд) до 2020 года. Из них 10 млрд рупий будет выделено на исследования и демонстрационные проекты, а 240 млрд рупий на строительство инфраструктуры по производству, транспортировке, хранению водорода. Планом поставлена цель — к 2020 году вывести на дороги страны 1 миллион автотранспортных средств, работающих на водороде. Также к 2020 году будет построено 1000 МВт водородных электростанций.[источник? ]

[править] США

Департамент Энергетики США (DOE) в январе 2006 года принял план развития водородной энергетики «Roadmap on Manufacturing R& D for the Hydrogen Economy» [3] [4].

Планом предусмотрено:

  • К 2010 году — первичное рыночное проникновение водорода;
  • К 2015 году — коммерческая доступность;
  • К 2025 году — реализация водородной энергетики.

8 августа 2005 года Сенат США принял Energy Policy Act of 2005. Законом предусмотрено выделение более $3 млрд на различные водородные проекты. И $1, 25 млрд на строительство новых атомных реакторов, производящих электроэнергию и водород.

[править] Исландия

Исландия планирует построить водородную экономику к 2050 году.[источник? ]

[править] Южно-Африканская Республика

Правительство Южно-Африканской Республики в 2008 году приняла водородную стратегию. К 2020 году ЮАР планирует занять 25% мирового рынка катализаторов для водородных топливных элементов[21].

[править] Ссылки

Водородная энергетика на Викискладе?
  1. Diesel Crosses $5.00/Gallon Mark in California
  2. As energy bills soar, Japanese test fuel of future
  3. Panasonic Fuel-Cell Initiative Heats Up In Japan
  4. Hyundai plans fuel-cell car for 2012
  5. http: //www.fuelcellsworks.com/Supppage9356.html Shanghai VW to debut hydrogen fuel-cell Lingyu in United States
  6. Коммерсантъ, 19.02.2007, интервью с М.Прохоровым
  7. http: //uk.reuters.com/article/rbssConsumerGoodsAndRetailNews/idUKT30359820080701
  8. http: //www.koreatimes.co.kr/www/news/nation/2008/09/123_30600.html
  9. http: //www.fuelcellsworks.com/Supppage9250.html
  10. «Airbus has successfully tested a fuel cells system in flight»
  11. UTC Power Fuel Cells Achieve Milestone, Topping 100, 000 Hours in Space
  12. Первый пилотируемый самолёт на топливных элементах поднялся в воздух
  13. http: //www.greencarcongress.com/2008/03/winter-testing.html
  14. http: //www.fuelcellsworks.com/Supppage8978.html
  15. http: //www.fuelcellsworks.com/Supppage9124.html
  16. Honda to Release New Fuel Cell Vehicle in Japan in Autumn
  17. Honda Begins Leasing FCX Clarity Fuel Cell Vehicle in Japan
  18. http: //www.fuelcellsworks.com/Supppage9397.html
  19. http: //www.financialexpress.com/news/tata-steel-develops-hydrogen-production-tech-granted-pct/370776/0
  20. http: //www.fuelcellsworks.com/Supppage9358.html
  21. SA sets R400m aside for hydrogen-economy push

Источник — «http: //ru.wikipedia.org/wiki/%D0%92%D0%BE%D0%B4%D0%BE%D1%80%D0%BE%D0%B4%D0%BD%D0%B0%D1%8F_%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B5%D1%82%D0%B8%D0%BA%D0%B0»

 

 

Пока весь мир разрабатывает топливные элементы и говорит о водородной энергетике будущего, скептики не устают повторять, что до сих пор у человечества не существует дешевого способа получения водорода. Современным методом получения является электролиз воды, однако для его осуществления в глобальных масштабах потребуется уйма электричества.

Основные надежды человечество возлагает на проект термоядерного синтеза, который должен открыть людям неисчерпаемый источник энергии, однако прогнозировать дату вступления первого токамака в строй до сих пор никто не берется. Кроме того, ученые пытаются приспособить бактерии для выработки водорода из пищевых и промышленных отходов, а еще пытаются имитировать процесс фотосинтеза, разделяющий воду на водород и кислород в растениях. Все эти методы пока еще очень далеки от промышленной реализации.

Американские ученые, похоже, научились получать водород в больших количествах при реакции алюминия с водой.


Разработчики из Университета Пердью создали новый сплав металлов, обогащенный алюминием, который может быть весьма эффективен в процессе выработки водорода. Использование этого сплава, кроме прочего, экономически оправдано, и такой метод может уже в скором времени составить конкуренцию современным видам топлива, используемым в транспортной и энергетической индустрии.

Искусственный фотосинтез стал ближе
Ученые из Пенсильванского университета создали прототип устройства, использующего солнечный свет для прямого разложения воды на водород и кислород. Устройство еще очень не эффективно, однако по представлениям...

Как говорит Джерри Вудолл, профессор университета и инициатор работ, его инновация может найти применение во всех сферах – как в мобильных устройствах для выработки энергии, так и в больших промышленных установках.

Новый сплав на 95% состоит из алюминия, а на оставшиеся 5% – из сложного сплава галлия, индия и олова. Хотя галлий и является очень редким и дорогим элементом, его количества в сплаве настолько малы, что стоимость сплава, и особенно стоимость его эксплуатации, может быть коммерчески выгодной.
При внесении этого сплава в воду алюминий вступает в реакцию окисления, в результате которой выделяется водород и тепловая энергия, а алюминий переходит в форму оксида.
2Al + 3H2O --> 3H2 + Al2O3 + Q

Из школьного курса химии каждому должно быть известно, что алюминий – чрезвычайно активный металл и легко вступает в реакцию с водой, высвобождая водород в ходе собственного окисления. Однако использование алюминия в быту, и особенно в качестве посуды для приготовления пищи, абсолютно безопасно, так как на поверхности алюминия всегда есть тончайшая, но очень прочная и инертная оксидная пленка Al2O3, из-за которой заставить алюминий вступить в реакцию с водой не так уж и легко.

Сплав индия, галлия и олова является критическим компонентом для технологии Вудолла: он препятствует образованию этой оксидной пленки и позволяет алюминию количественно вступить в реакцию с водой.


Кроме водорода ценным продуктом реакции является и тепловая энергия, которая также может быть использована. Оксид алюминия и более инертный сплав галлия, индия и олова может быть впоследствии восстановлен в ходе известного промышленного процесса, таким образом, замкнутый цикл может снизить стоимость выработки энергии, в пересчете на отечественные деньги, до менее чем 2 рублей за киловатт-час.

Заслуга химиков-технологов в том, что они не только смогли проделать титаническую работу по подбору химического состава алюминиевого сплава, но и научились контролировать его микроструктуру, которая и является ключом к функционализации материала.

Микроструктура металлов
строение металла, выявляемое с помощью микроскопа (оптического или электронного). Микроскоп для исследования металла впервые применил П. П. Аносов (1831) при изучении булатной стали. Металлы и сплавы...

Дело в том, что смесь металлов при затвердевании не формирует однородного твердого раствора из-за различий в строении кристаллических решеток металлов, кроме того, формирующийся сплав имеет довольно низкую температуру плавления. В результате конечный сплав формируется при остывании из расплава в виде смеси двух независимых фаз – алюминия и сплава галлия, индия и олова, вкрапленных в толщу материала в виде микроскопических кристаллитов.

Именно такая двухфазная композиция и определяет способность алюминия в данном сплаве вступать в реакцию с водой при нормальных условиях, а потому является критичной для всей технологии.


Кроме того, как оказалось, данный материал может быть получен в двух разных формах в зависимости от способа охлаждения расплавленной смеси металлов. Судя по всему, при быстром охлаждении (закалке) кристаллическая структура раствора не успевает перестроиться, в результате чего образец на выходе получается практически однофазным. Сплав Вудолла в такой форме не вступает в реакцию с водой до тех пор, пока не будет смочен расплавленной смесью галлия, индия и олова.

Однако обнаружив способность такого смоченного материала вступать в реакцию с водой при нормальных условиях, ученые изрядно воодушевились и спустя некоторое время обнаружили способность расплава, обогащенного алюминием, кристаллизоваться при медленном охлаждении в двухфазной форме. Такой материал способен вступать в реакцию с водой уже без участия жидкого сплава галлия, индия и олова. Как полагают ученые, определяющим фактором в препятствии для образования пленки оксида на поверхности материала является микроструктура материалов на поверхности раздела между двумя фазами, образующими материал.

Галлий
(Gallium) Ga, химический элемент 13-й (IIIa) группы периодической системы, атомный номер 31, атомная масса 69, 72. Галлий – типичный рассеянный элемент, иногда его также относят и к редким. В природе...

В данный момент ученые озабочены технологической задачей брикетирования своего сплава для повышения удобства его использования. Так, брусочек алюминиевого сплава может быть помещен в реактор, размеры которого определяются

 

 

необходимым количеством водорода, и выдать ровно столько водорода, сколько нужно в том месте и в то время, когда это необходимо. Такая технология, будучи доведенной до логического конца, снимет еще две насущные проблемы водородной энергетики (помимо собственно получения водорода из воды), а именно, хранение водорода и его транспортировку.
Сплав индия, галлия и олова является инертным компонентом и не участвует в реакции, так что после окончания реакции может быть использован заново практически без потерь.

Оксид алюминия также является очень удобной субстанцией для проведения его электрохимического восстановления в соответствии с процессом Холла-Эру, повсеместно используемого в алюминиевой промышленности в настоящее время:
2Al2O3 + 3С = 4Al + 3CO2
По словам учёных, восстановление алюминия из оксида, получающегося при производстве водорода, даже дешевле, чем его стандартное производство из бокситов, хотя полный цикл из алюминия в алюминий, разумеется, затратен – вечный двигатель учёные создавать не собирались.

В принципе, для внедрения технологии Вудолла, пока еще не описанной в научных публикациях, не требуется новых инноваций – необходимо лишь наладить инфраструктуру доставки сплава к конечному потребителю и организовать процесс его восстановления с использованием хорошо освоенных промышленностью методов получения металлического алюминия.

Алюминий является самым распространенным металлом на Земле. Кроме того, побочным продуктом разработки бокситных руд – минералов, содержащих алюминий, является как раз галлий – самый ценный компонент сплава Вудолла.

Сам ученый, награжденный в прошлом высшей наградой в области технологии в США, отмечает наряду с проблемами чисто экономического характера и необходимость проведения дополнительных экспериментов по влиянию состава и в особенности микроструктуры на поверхности раздела фаз в новом материале на его свойства. Такие работы вполне могут позволить в будущем перейти к использованию более дешевых и доступных металлов, чем галлий.

 

Водородная энергетика (ВЭ) является приоритетным направлением развития энергетики большинства индустриальных стран мира. Правительства этих стран планирую постепенное сокращение потребления углеводородного топлива и переход на альтернативные источники энергии. Наиболее перспективным в этом направлении считается водородная энергетика.

ВЭ как одно из направлений научно-технического прогресса сформировалась в середине 70-х годов в разгар охватившего мир энергетического кризиса. Главная идея - замена ископаемых органических видов топлива во всех сферах их применения на новый энергоноситель - водород, при сжигании которого образуется только вода и практически отсутствуют какие-либо вредные выбросы.

Кратко о зарождении и современном состоянии водородной экономики, можно прочитать здесь.

Планируется производство водорода из воды и органических топлив и его использование на основе топливных элементов в промышленности, энергетике, на транспорте, в жилищно-коммунальном хозяйстве и в других сферах энергосектора.

Столь крупномасштабное применение водорода, поможет избежать наступления глобальной экологической катастрофы, а также должно положительно сказаться на экономике большинства энергозависимых стран мира.

О перспективах инновационного обновления энергосектора можно прочитать здесь.

 

В настоящий момент существуют сотни прогнозов развития ВЭ, а также моделей отражающих предполагаемое состояние энергетики в будущем, с учетом крупномасштабного применения водородных технологий.

Во многих странах, чье правительство заинтересованно в развитии ВЭ, это прежде всего США, страны ЕС и Япония, сформированы национальные водородные программы , а также некоторые из этих стран уже успешно внедряют и реализуют различные планы и проекты направленные на постепенный переход на водородное топливо.

 

Почему же именно водород? Это обусловлено несколькими, важнейшими, преимущественными по сравнению с углеводородным топливом качествами, которыми он обладает.

Но при использовании водорода возникает целый ряд проблем. К ним можно отнести:

получение водорода
хранение и транспортировка водорода
создание водородной инфраструктуры
водородная безопасность

Еще одна немаловажная проблема - это рентабельность водородных технологий. Сейчас производство водорода и ТЭ обходятся очень дорого, но прогнозируют постепенное их удешевление. Более подробную информацию о проблемах развития ВЭ можно прочитать здесь

.

Использование водорода в качестве основного источника энергии в будущем намечается в промышленности, автотранспорте, жилищно-коммунальном хозяйстве и других сферах экономики. Столь масштабное применение водорода, требует новых мощностей для его производства. На первых парах, предполагается применение атомно-водородной энергетики , предусматривающей крупномасштабное производство на базе атомной энергетики не только электроэнергии и тепла, но и водорода и последующее его использование для разнообразных нужд человека.

 

Огромную роль в развитии ВЭ играет международное сотрудничество. Первый кирпичик в развитии международных отношений в области ВЭ, был заложен в 1974 году. Именно тогда была создана Международная ассоциация п


Поделиться:



Популярное:

  1. V. ОСНОВНЫЕ ФАКТОРЫ РИСКА ВОЗНИКНОВЕНИЯ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ ПРИРОДНОГО И ТЕХНОГЕННОГО ХАРАКТЕРА.
  2. Абсолютное давление газа в сосуде равно 0,05 МПа. Чему равно избыточное давление в этом сосуде?
  3. Влияние растворенного газа на миграцию нефти
  4. ВНИМАНИЕ: отсоединить источник газа, сбросить оставшееся в маркере давление, отсоединить ствол и фидер
  5. ВНИМАНИЕ: отсоединить источник газа, сбросить оставшееся в маркере давление, отсоединить ствол и фидер.
  6. Внутренняя энергия газа Ван-дер-Ваальса
  7. ВОССТАНОВЛЕНИЕ ДЕТАЛЕЙ ПОЛУАВТОМАТИЧЕСКОЙ СВАРКОЙ В СРЕДЕ УГЛЕКИСЛОГО ГАЗА.
  8. Газораспределительные сети природного газа низкого давления
  9. Газораспределительные сети природного газа среднего и высокого давления
  10. Геологические и извлекаемые запасы нефти и газа, классификация запасов нефти.
  11. Глава 1. Основы молекулярно – кинетической теории идеального газа
  12. Глава 10 Механика природного резервуара


Последнее изменение этой страницы: 2016-04-10; Просмотров: 1280; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.113 с.)
Главная | Случайная страница | Обратная связь