Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Полная статья Производство водорода
Снижение цены водорода возможно при строительстве инфраструктуры по доставке и хранению водорода. В США действует 750 километров, а в Европе — 1500 километров водородных трубопроводных систем. Трубопроводы действуют при давлении 10—20 бар, изготовлены из стальных труб диаметром 25—30 см. Старейший водородный трубопровод действует в районе германского Рура. 210 километров трубопровода соединяют 18 производителей и потребителей водорода. Трубопровод действует более 50 лет без аварий. Самый длинный трубопровод длиной 400 километров проложен между Францией и Бельгией. После небольших изменений водород может передаваться по существующим газопроводам природного газа. Водород в настоящее время, в основном, применяется в технологических процессах производства бензина и для производства аммиака. США ежегодно производят около 11 миллионов тонн водорода, что достаточно для годового потребления примерно 35—40 миллионов автомобилей. Департамент Энергетики США (DoE) прогнозирует, что стоимость водорода сравняется со стоимостью бензина к 2015 году. [править] Малые стационарные приложения Производство электрической и тепловой энергии в топливных элементах мощностью от 0, 75 кВт до 10 кВт. Домашние энергетические станции имеют мощность 0, 75—1 кВт, предназначены для выработки электроэнергии в течение 8 часов в сутки и выработки тепла и горячей воды 24 часа в сутки. Установки мощностью 5 кВт предназначаются для нескольких коттеджей. Они зачастую предназначаются только для выработки электроэнергии. Популярность малых домашних комбинированных (электричество + тепло) установок связана с тем, что они имеют высокий КПД, малые выбросы СО2, легко могут быть встроены в существующую инфраструктуру. Такая энергетическая установка занимает размер не больше домашнего бойлера, может работать на природном газе. В 2005 году во всём мире было установлено более 900 новых малых стационарных водородных энергетических установок (На 30 % больше, чем в 2004 году). За 2006 год во всём мире установлено около 1500 новых малых энергетических станций. В конце 2006 года во всём мире эксплуатировалось около 5000 малых стационарных водородных электростанций. Технологии Доминируют две технологии: PEM (протон-обменная) и SOFC (твёрдо-оксидная). Около 75 % установок в 2005 году были изготовлены по PEM технологии, около 25 % — SOFC. Топливо Большая часть домашних станций разработана для применения природного газа, пропана, очень немногие могут работать со сжиженным нефтяным газом (LPG). Многие производители работают с керосином. Перспективы В 2006, как и в 2005 году большая часть малых приложений была установлена в Японии. Японская NEF (New Energy Foundation) объявила о начале многолетнего демонстрационного проекта применения малых стационарных топливных элементов. Будет субсидирована установка 6400 топливных элементов. В 2005 году стоимость 1 кВт водородной бытовой станции в Японии составляла 10 млн ¥ (примерно $87 000), работы по ее установке стоили еще 1 млн ¥. К середине 2008 года в Японии было установлено около 3000 бытовых энергетических установок на водородных топливных элементах, а их стоимость снизилась до 2 млн ¥ (примерно $19 000)[2]. Япония уже имеет опыт использования подобных программ. В 1994 году была принята программа развития солнечной энергетики. Японское правительство ежегодно вкладывало $115 млн в установку фотоэлектрических элементов на крышах домов. С тех пор установленные мощности солнечной энергетики выросли в 35 раз. Средняя стоимость фотоэлектрических элементов снизилась на 75 %. Компании — основные производители:
и др. [править] Стационарные применения Подводная лодка класса U212 (Германия) с силовой установкой на водородных топливных элементах. Производство электрической и тепловой энергии в топливных элементах мощностью более 10 кВт. К концу 2006 года во всём мире было установлено более 800 стационарных энергетических установок на топливных элементах мощностью более 10 кВт. Их суммарная мощность — около 100 МВт. За 2006 год построено более 50 установок суммарной мощностью более 18 МВт. Технологии В 2005 году среди новых установок лидировали Расплавные Карбонатные Топливные Элементы (MCFC). На втором месте по числу новых установок были Фосфорнокислые технологии (PAFC). Протонобменные технологии (PMFC) применялись, в основном, в установках мощностью до 10 кВт и в автомобильных приложениях. Топливо Хотя большая часть стационарных топливных элементов в настоящее время работает на природном газе, всё большее количество установок работают с альтернативными видами топлив. В 2005 году усилился тренд применения сингаза и биогаза. В 2005 году биогаз вышел на второе место после природного газа. В 2005 году были построены электростанции (Япония, Германия), работающие на биогазе, получаемом из древесных отходов, пластика, муниципальных сточных вод. Водород и керосин и в будущем будут занимать значительную долю в нише малых стационарных установок мощностью более 10 кВт. Популярное:
|
Последнее изменение этой страницы: 2016-04-10; Просмотров: 704; Нарушение авторского права страницы