Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
БИОЭНЕРГЕТИКА МЫШЕЧНОЙ ДЕЯТЕЛЬНОСТИ
Как уже указывалось, обе фазы мышечной деятельности - сокращение и расслабление — протекают при обязательном использовании энергии, которая выделяется при гидролизе АТФ: АТФ + Н20-------- АДФ + Н3Р04 + энергия Однако запасы АТФ в мышечных клетках незначительны (в покое концентрация АТФ в мышцах около 5 ммоль/л) и их достаточно для мышечной работы в течение 1-2 с. Поэтому для обеспечения более продолжительной мышечной деятельности в мышцах должно происходить пополнение запасов АТФ. Образование АТФ в мышечных клетках непосредственно во время физической работы называется ресинтезом АТФ и идет с потреблением энергии. В зависимости от источника энергии выделяют несколько путей ресинтеза АТФ. Для количественной характеристики различных путей ресинтеза АТФ обычно используются следующие критерии: а) максимальная мощность, или максимальная скорость, - это наибольшее количество АТФ, которое может образоваться в единицу времени за счет данного пути ресинтеза. Измеряется максимальная мощность в калориях или джоулях, исходя из того, что 1 ммоль АТФ (506 мг) соответствует в физиологических условиях примерно 12 кал или 50 Дж (1 кал = 4, 18 Дж). Поэтому данный критерий имеет размерность кал/минкг мышечной ткани или соответственно Дж/мин-кг мышечной ткани; 122 б) время развертывания - это минимальное время, необходимое для выхода ресинтеза АТФ на свою наибольшую скорость, т. е. для достижения максимальной мощности. Этот критерий измеряется в единицах времени (с, мин); в) время сохранения или поддержания максимальной мощности - это наибольшее время функционирования данного пути ресинтеза АТФ с максимальной мощностью. Единицы измерения - с, мин, ч; г) метаболическая емкость - это общее количество АТФ, которое может образоваться во время мышечной работы за счет данного пути ресинтеза АТФ. В зависимости от потребления кислорода пути ресинтеза делятся на аэробные и анаэробные. АЭРОБНЫЙ ПУТЬ РЕСИНТЕЗА АТФ Аэробный путь ресинтеза АТФ (синонимы: тканевое дыхание, аэробное или окислительное фосфорилирование) - это основной, базовый способ образования АТФ, протекающий в митохондриях мышечных клеток. В ходе тканевого дыхания от окисляемого вещества отнимаются два атома водорода (два протона и два электрона) и по дыхательной цепи передаются на молекулярный кислород - 02, доставляемый кровью в мышцы из воздуха, в результате чего возникает вода. За счет энергии, выделяющейся при образовании воды, происходит синтез АТФ из АДФ и фосфорной кислоты. Обычно на каждую образовавшуюся молекулу воды приходится синтез трех молекул АТФ. В упрощенном виде ресинтез АТФ аэробным путем может быть представлен схемой:
Окисляемое вещество
Чаще всего водород отнимается от промежуточных продуктов цикла трикарбоновых кислот (ЦТК) - цикла Кребса (изолимонная, а- кетоглутаровая, янтарная и яблочная кислоты). Цикл Кребса - это за- Вершающий этап катаболизма, в ходе которого происходит окисление аЦетилкофермента А до С02 и Н20. В ходе этого процесса от перечисленных выше кислот отнимается 4 пары атомов водорода и поэтому образуется 12 молекул АТФ при окислении одной молекулы ацетилкофермента А. 12 АДФ + 12 Н3Р04 12 АТФ В свою очередь, ацетил-КоА может образовываться из углеводов, жиров и аминокислот, т. е. через ацетил-КоА в цикл Кребса вовлекаются углеводы, жиры и аминокислоты: Углеводы 02 + оГ^-^. + О, Жиры------------------- -г Ацетил-КоА ---------- 2 С02 + Н20 + 02 X 4 ЦТК Аминокислоты ^ Скорость аэробного пути ресинтеза АТФ контролируется содержанием в мышечных клетках АДФ, который является активатором ферментов тканевого дыхания. В состоянии покоя, когда в клетках почти нет АДФ, тканевое дыхание протекает с очень низкой скоростью. При мышечной работе за счет интенсивного использования АТФ происходит образование и накопление АДФ. Появившийся избыток АДФ ускоряет тканевое дыхание, и оно может достигнуть максимальной интенсивности. Другим активатором аэробного пути ресинтеза АТФ является С02. Возникающий при физической работе в избытке углекислый газ активирует дыхательный центр мозга, что в итоге приводит к повышению скорости кровообращения и улучшению снабжения мышц кислородом. Аэробный путь образования АТФ характеризуется следующими критериями (критерии основных путей ресинтеза АТФ представлены в табл. 7 на с. 136). Максимальная мощность составляет 350-450 кал/мин-кг. По сравнению с анаэробными путями ресинтеза АТФ тканевое дыхание обладает самой низкой величиной максимальной мощности. Это обусловлено тем, что возможности аэробного процесса ограничены доставкой кислорода в митохондрии и их количеством в мышечных клетках. Поэтому за счет аэробного пути ресинтеза АТФ возможно выполнение физических нагрузок только умеренной мощности.
Время развертывания - 3-4 мин (у хорошо тренированных спортсменов может быть около 1 мин). Такое большое время развертывания объясняется тем, что для обеспечения максимальной скорости тканевого дыхания необходима перестройка всех систем организма, участвующих в доставке кислорода в митохондрии мышц. Время работы с максимальной мощностью составляет десятки минут. Как уже указывалось, источниками энергии для аэробного ресинтеза АТФ являются углеводы, жиры и аминокислоты, распад которых завершается циклом Кребса. Причем для этой цели используются не только внутримышечные запасы данных веществ, но и углеводы, жиры, кетоновые тела и аминокислоты, доставляемые кровью в мышцы во время физической работы. В связи с этим данный путь ресинтеза дТФ функционирует с максимальной мощностью в течение такого продолжительного времени. По сравнению с другими идущими в мышечных клетках процессами ресинтеза АТФ аэробный ресинтез имеет ряд преимуществ. Он отличается высокой экономичностью: в ходе этого процесса идет глубокий распад окисляемых веществ до конечных продуктов - С02 и Н20 и поэтому выделяется большое количество энергии. Так, например, при аэробном окислении мышечного гликогена образуется 39 молекул АТФ в расчете на каждую отщепляемую от гликогена молекулу глюкозы, в то время как при анаэробном распаде этого углевода (гликолиз) синтезируется только 3 молекулы АТФ в расчете на одну молекулу глюкозы. Другим достоинством этого пути ресинтеза является универсальность в использовании субстратов. В ходе аэробного ресинтеза АТФ окисляются все основные органические вещества организма: аминокислоты (белки), углеводы, жирные кислоты, кетоновые тела и др. Еще одним преимуществом этого способа образования АТФ является очень большая продолжительность его работы: практически он функционирует постоянно в течение всей жизни. В покое скорость аэробного ресинтеза АТФ низкая, при физических нагрузках его мощность может стать максимальной. Однако аэробный способ образования АТФ имеет и ряд недостатков. Так, действие этого способа связано с обязательным потреблением кислорода, доставка которого в мышцы обеспечивается дыхательной и сердечно-сосудистой системами (вместе они обычно обозначаются термином «кардиореспираторная система»). Функциональное состояние кардиореспираторной системы является лимитирующим фактором, ограничивающим продолжительность работы аэробного пути ресинтеза АТФ с максимальной мощностью и величину самой максимальной мощности. Возможности аэробного пути ограничены еще и тем, что все ферменты тканевого дыхания встроены во внутреннюю мембрану митохондрий в форме дыхательных ансамблей и функционируют только При наличии неповрежденной мембраны. Любые факторы, влияющие На состояние и свойства мембран, нарушают образование АТФ аэробным способом. Например, нарушения окислительного фосфорилирова- ния наблюдаются при ацидозе (повышение кислотности), набухании митохондрий, при развитии в мышечных клетках процессов свободно- радикального окисления липидов, входящих в состав мембран митохондрий. Еще одним недостатком аэробного образования АТФ можно считать большое время развертывания (3-4 мин) и небольшую по абсолютной величине максимальную мощность. Поэтому мышечная деятельность, свойственная большинству видов спорта, не может быть полностью обеспечена этим путем ресинтеза АТФ и мышцы вынуждены дополнительно включать анаэробные способы образования АТФ, имеющие более короткое время развертывания и большую максимальную мощность. В спортивной практике для оценки аэробного фосфорилирования часто используют три показателя: максимальное потребление кислорода (МПК), порог анаэробного обмена (ПАЛО) и кислородный приход. МПК - это максимально возможная скорость потребления (т. е. потребления в единицу времени) кислорода организмом при выполнении физической работы. Этот показатель характеризует максимальную мощность аэробного пути ресинтеза АТФ: чем выше величина МПК, тем больше значение максимальной скорости тканевого дыхания, это обусловлено тем, что практически весь поступающий в организм кислород используется в этом процессе. МПК представляет собой интегральный показатель, зависящий от многих факторов: от функционального состояния кардиореспираторной системы, от содержания в крови гемоглобина, а в мышцах - миоглобина, от количества и размера митохондрий. У нетренированных молодых людей МПК обычно равно 3-4 л/мин, у спортсменов высокого класса, выполняющих аэробные нагрузки (продолжительные нагрузки умеренной мощности, обеспечиваемые тканевым дыханием), МПК - 6-7 л/мин. На практике, для исключения влияния на эту величину массы тела МПК рассчитывают на кг массы тела. В этом случае у молодых людей, не занимающихся спортом, МПК равно 40-50 мл/мин-кг, а у хорошо тренированных спортсменов - 80-90 мл/мин-кг. В спортивной практике МПК также используется для характеристики относительной мощности аэробной работы, которая выражается потреблением кислорода в процентах от МПК. Например, относительная мощность работы, выполняемой с потреблением кислорода 3 л/мин спортсменом, имеющим МПК, равное 6 л/мин, будет составлять 50% от уровня МПК. ПАНО - это минимальная относительная мощность работы, измеренная по потреблению кислорода в процентах по отношению к МПК, при которой начинает включаться гликолитический путь ресинтеза АТФ (концентрация молочной кислоты в крови возрастает до 4 ммоль/л). у нетренированных ПАНО составляет 40-50% от МПК, а у спортсменов ПАНО может достигать 70% от МПК. Более высокие величины ПАНО у тренированных объясняются тем, что аэробное фосфорилирование у них дает больше АТФ в единицу времени, и поэтому анаэробный путь образования АТФ - гликолиз - включается при больших нагрузках. Кислородный приход - это количество кислорода (сверх дорабоче- го уровня), использованное во время выполнения данной нагрузки для обеспечения аэробного ресинтеза АТФ. Кислородный приход характеризует вклад тканевого дыхания в энергообеспечение проделанной работы. Под влиянием систематических тренировок, направленных на развитие аэробной работоспособности, в миоцитах возрастает количество митохондрий, увеличивается их размер, в них становится больше ферментов тканевого дыхания. Одновременно происходит совершенствование кислородтранспортной функции: повышается содержание миоглобина в мышечных клетках и гемоглобина в крови, возрастает работоспособность дыхательной и сердечно-сосудистой систем организма. АНАЭРОБНЫЕ ПУТИ РЕСИНТЕЗА АТФ Анаэробные пути ресинтеза АТФ (креатинфосфатный, гликолити- ческий) являются дополнительными способами образования АТФ в тех случаях, когда основной путь получения АТФ - аэробный - не может обеспечить мышечную деятельность необходимым количеством энергии. Это бывает на первых минутах любой работы, когда тканевое дыхание еще полностью не развернулось, а также при выполнении физических нагрузок высокой мощности. Популярное:
|
Последнее изменение этой страницы: 2016-06-04; Просмотров: 678; Нарушение авторского права страницы