Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Устройство и принцип действия микрофонов



На рис. 15.1 рассмотрены основные принципы устройства микрофонов.

Рис. 15.1. Устройство микрофонов:
а — угольного; б — электромагнитного; в — электродинамического; г — ленточного; д — конденсаторного; е — пьезоэлектрического

Угольный микрофон (рис. 15.1, а) работает следующим образом. При воздействии звукового давления на его диафрагму 1 она начинает колебаться. В такт этим колебаниям изменяется и сила сжатия зерен угольного порошка 2, в связи, с чем изменяется сопротивление между электродами 3 и 4, а при постоянном электрическом напряжении изменяется и ток через микрофон. Если, скажем, включить микрофон к первичной обмотке трансформатора Т, то на зажимах его вторичной обмотки будет возникать переменное напряжение, форма кривой которого будет отображать форму кривой звукового давления, воздействующего на диафрагму микрофона.

Основное преимущество угольного микрофона — высокая чувствительность, позволяющая использовать его без усилителей. Недостатки — нестабильность работы и шум из-за того, что полезный электрический сигнал вырабатывается при разрыве и восстановлении контактов между отдельными зернами порошка, большая неравномерность частотной характеристики и значительные нелинейные искажения.

После угольного микрофона появился электромагнитный микрофон, который работает следующим образом (рис. 15.1, б). Перед полюсами (полюсными наконечниками) 2 магнита 3 располагают ферромагнитную диафрагму 1 или скрепленный с ней якорь. При колебаниях диафрагмы под воздействием на нее звукового давления меняется магнитное сопротивление системы, а значит, и магнитный поток через витки обмотки, намотанной на магнитопровод этой системы. Благодаря этому на зажимах обмотки возникает переменное напряжение звуковой частоты, являющееся выходным сигналом микрофона. Электромагнитный микрофон стабилен в работе. Однако ему свойственны узкий частотный диапазон, большая неравномерность частотной характеристики и значительные нелинейные искажения.

В противоположность электромагнитному микрофону чрезвычайно широкое распространение для целей озвучения, звукоусиления получил электродинамический микрофон в своих двух модификациях — катушечной и ленточной.

Принцип действия электродинамического катушечного микрофона состоит в следующем (рис.15.1, в). В кольцевом зазоре 1 магнитной системы, имеющей постоянный магнит 2, находится подвижная катушка 3, скрепленная с диафрагмой 4. При воздействии на нее звукового давления, она вместе с подвижной катушкой начинает колебаться. В силу этого в витках катушки, перерезывающих магнитные силовые линии, возникает напряжение, являющееся выходным сигналом микрофона.

Электродинамический микрофон стабилен, имеет довольно широкий частотный диапазон, сравнительно небольшую неравномерность частотной характеристики.

Устройство ленточного электродинамического микрофона несколько отличается от устройства катушечной модификации (рис. 15.1, г). Здесь магнитная система микрофона состоит из постоянного магнита 1 и полюсных наконечников 2, между которыми натянута легкая, обычно алюминиевая, тонкая (порядка 2 мкм) ленточка 3. При воздействии на обе ее стороны звукового давления возникает сила, под действием которой ленточка начинает колебаться, пересекая при этом магнитные силовые линии, вследствие чего на ее концах развивается напряжение. Так как сопротивление ленточки очень мало, то для уменьшения падения напряжения на соединительных проводниках оно подается на первичную обмотку повышающего трансформатора, размещенного непосредственно вблизи ленточки. Напряжение на зажимах вторичной обмотки трансформатора является выходным напряжением микрофона. Частотный диапазон этого микрофона довольно широк, а неравномерность частотной характеристики невелика.

Для электроакустических трактов высокого качества наибольшее распространение в настоящее время получил конденсаторный микрофон. Принципиально он работает следующим образом (рис. 15.1, д). Жестко натянутая мембрана 1 под воздействием звукового давления может колебаться относительно неподвижного электрода 2, являясь вместе с ним обкладками электрического конденсатора. Этот конденсатор включается в электрическую цепь последовательно с источником постоянного тока Е и активным нагрузочным сопротивлением R. При колебаниях мембраны емкость конденсатора меняется с частотой воздействующего на мембрану звукового давления, в электрической цепи появляется переменный ток той же частоты и на нагрузочном сопротивлении возникает падение напряжения, являющееся выходным сигналом микрофона. Нагрузочное сопротивление должно быть большим, чтобы падение напряжения на нем не уменьшалось сильно на низких частотах, где емкостное сопротивление конденсатора очень велико и эксплуатация такого микрофона была бы невозможна из-за сравнительно небольшого сопротивления микрофонных линий и нагрузки. По этой причине почти у всех современных конденсаторных микрофонов предусмотрены конструктивно связанные с самим микрофоном усилители, имеющие малый коэффициент усиления (порядка 1), высокое входное и низкое выходное сопротивления. Конденсаторные микрофоны имеют самые высокие качественные показатели: широкий частотный диапазон, малую неравномерность частотной характеристики, низкие нелинейные и переходные искажения, высокую чувствительность и низкий уровень шумов.

Принцип действия электретных микрофонов аналогичен принципу действия конденсаторных микрофонов, с тем отличием, что для их работы не требуется внешний источник питания. Мембрана таких микрофонов получает электрический заряд в процессе производства, и для их питания достаточно небольшого напряжения (обычно около 1, 5 вольта), которое обеспечивается установленной в микрофоне батареей.

По сравнению с конденсаторными микрофонами, мембрана электретных микрофонов значительно толще, поэтому их чувствительность и частотные характеристики несколько хуже. Появившиеся недавно «обратно-электретные» микрофоны несколько компенсируют этот недостаток за счет того, что электрический заряд получает не мембрана, а фиксированная металлическая пластина, а сама мембрана может быть изготовлена из более тонкого материала.

Некоторое распространение получили микрофоны пьезоэлектрические (рис. 15.1, е). Их действие основано на том, что звуковое давление воздействует непосредственно или через диафрагму 1 и скрепленный с ней стержень 2 на пьезоэлектрический элемент 3. При деформации последнего на его обкладках вследствие пьезоэлектрического эффекта возникает напряжение, являющееся выходным сигналом микрофона.

Стереофонический микрофон представляет собой систему из двух микрофонов, конструктивно размещенных в общем корпусе на одной оси друг над другом. Для записи по системе XY применяют стереофонические микрофоны, состоящие из двух одинаковых монофонических микрофонов с кардиоидными характеристиками направленности, причем акустические оси левого и правого микрофонов повернуты на 90° относительно друг друга (рис. 15.2, а). При записи по системе MS один из микрофонов (микрофон середины) имеет круговую характеристику направленности, а другой (микрофон стороны) — косинусоидальную характеристику направленности (рис. 15.2, б).

Рис. 15.2. Характеристики направленности
стереофонических микрофонов

Радиомикрофон представляет собой систему, состоящую из микрофона, переносного малогабаритного передатчика и стационарного приемника. Микрофон чаще всего используют динамический катушечный или электретный. Передатчик либо совмещают в одном корпусе с микрофоном, либо выполняют карманного типа. Он излучает энергию радиочастот в УКВ диапазоне на одной из фиксированных частот. Вследствие влияния дополнительных преобразований в системе «передатчик — эфир — приемник» качественные параметры радиомикрофона уступают параметрам обычного микрофона.

Оптические микрофоны

В обычных микрофонах, что конденсаторных, что динамических, колебания воздушной среды преобразуются в электрические. В новом микрофоне наличествует еще одно звено — световой луч. В микрофоне есть два световода: один — издающий, другой — принимающий, а вместо стандартной мембраны используется зеркальная мембрана, отражающая луч на принимающий световод. Когда эта мембрана находится в состоянии покоя, луч попадает точно на принимающий светодиод. Но стоит мембране прийти в движение от воздействия на нее звука, как угол отражения, естественно, меняется, соответственно, меняется и количество света, попадающего на принимающий светодиод. Все это фиксируется фотодетектором, который уже преобразует световой поток в электрические колебания.

Цифровые микрофоны

В цифровом микрофоне, без какого бы то ни было усиления, аналоговый сигнал превращается в цифровой. Это осуществляется с помощью уникального конвертера. На выходе цифрового преобразователя вырабатывается 28-битный сигнал с динамическим диапазоном более 140 дБ. Основное преимущество прямого преобразования — значительное увеличение динамического диапазона, которое заметно на всем дальнейшем пути прохождения сигнала. Регулировка чувствительности осуществляется в цифровом виде, в результате можно отказаться от таких традиционных периферийных устройств, как предусилитель и аналого-цифровой преобразователь.

 


Поделиться:



Популярное:

  1. Cсрочный трудовой договор и сфера его действия.
  2. G дара 50-й Генный Ключ видит совершенно новую реальность социального взаимодействия людей, «в настоящее время находящуюся на самой ранней стадии проявления в мире.
  3. I. Специфика отношений “принципал – агент” применительно к государству.
  4. V. Досудебный (внесудебный) порядок обжалования решений и действий (бездействия) подразделения Госавтоинспекции и уполномоченных должностных лиц, предоставляющих государственную услугу
  5. XI. ПРАВОВЫЕ ОСНОВЫ ОЦЕНКИ ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ
  6. XXIII. ПСИХИЧЕСКАЯ ЭНЕРГИЯ И ВЫСШИЙ ПРИНЦИП ЭВОЛЮЦИИ
  7. Абстрагирование и вербализация как действия «разума»
  8. АКТУАЛЬНОСТЬ, ЭПИДЕМИОЛОГИЯ, КЛАССИФИКАЦИЯ ОТРАВЛЕНИЙ ВСЛЕДСТВИЕ ТОКСИЧЕСКОГО ДЕЙСТВИЯ АЛКОГОЛЯ,
  9. Алкмеон. Принцип нервизма. Нейропсихизм. Принцип подобия
  10. Алкоголь, табак и иные средства воздействия на генетику и психику человека, как глобальное средство управления
  11. Анализ взаимодействия вибраций нумерологического кода в мандале
  12. Анализ влияния ошибочных действий на формирование самоконтроля над двигательными действиями


Последнее изменение этой страницы: 2016-06-04; Просмотров: 4212; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.011 с.)
Главная | Случайная страница | Обратная связь