Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Теоретико-множественный смысл разности



В аксиоматической теории вычитание натуральных чисел было оп­ределено как операция, обратная сложению:

а - b = с < => ($Î N) b + с = a

Вычитание целых неотрицательных чисел определяется аналогично. Выясним, каков смысл разности таких чисел, если а = n(А), b = n(В).

Теорема 3. Пусть А - конечное множество и В - его собственное подмножество. Тогда множество А\В - тоже конечно, причем выпол­няется равенство n(А\В) = n(А) - n(В)

Рис. 112

Доказательство. Так как по условию В - соб­ственное подмножество множества А, то с помощью кругов Эйлера их можно представить так, как на рисунке 112. Разность А\В на этом рисунке за­штрихована. Видим, что множества В и А\В не пересекаются и их объединение равно А. Поэтому число элементов в множестве А можно найти по формуле n(А) = n(В) + n(А\В), откуда, по определению вычитания как операции, обратной сложению, получаем, что n(А\В) = n(А) - n(В).

Из рассмотренной теоремы следует, что с теоретико-множествен­ных позиций разность натуральных чисел а и b представляет собой число элементов в дополнении множества В до множества А, если а = n(А), b = n(В) и ВÌ А.

а – b = n(А) - n(В) = n(А\В), если ВÌ А.

Аналогичное истолкование получает вычитание нуля, а также вычитание а из а.

Так как А \ Æ = А, А \ А = Æ, то а - 0 = а и а - а = 0.

Взаимосвязь вычитания чисел и вычитания множеств позволяет обосновать выбор действия при решении текстовых задач. Выясним, например, почему следующая задача решается при помощи вычитания: «У школы росло 7 деревьев, из них 4 березы, остальные липы. Сколько лип росло у школы? »

В задаче рассматриваются три множества: множество А всех деревьев, множество В берез, оно является подмножеством множества А; и множество С лип - оно представляет собой дополнение множества В до А. В задаче требуется найти число элементов в этом дополнении.

Так как по условию n(А) = 7, n(В) = 4 и ВÌ А, то n(С) = n(А\В) = n(А) - n(В) = 7 – 4.

Разность 7 - 4 - это математическая модель данной задачи. Вычислив значение этого выражения, получим ответ на вопрос задачи: 7 -- 4 = 3. Следовательно, у школы росло 3 липы.

Рассматриваемый подход к сложению и вычитанию целых неотрицательных чисел позволяет истолковать с теоретико-множественных позиций правила вычитания числа из суммы и суммы из числа.

Выясним, например, теоретико-множественный смысл правила: «Если а. b, с - натуральные числа и а > с, то (а + b ) - с = (а - с) + b».

Пусть А, В и С - такие множества, n(А) = а, n(В) = b и А Ç В = Æ, СÌ А (рис. 113). Нетрудно доказать, что для данных множеств А, В имеет место равенство (А È В) \ С = (А\С) È В.

Но n( (А È В) \ С) = n (А È В) – n(С) = (а + b ) – с, а n((А\С) È В) = n(А\С) + n(В) – (а – с) + b.

И следовательно (а + b ) - с = (а - с) + b

С теоретико-множественной позиции можно рассмотреть и смысл отношений «больше на» и «меньше на».

В аксиоматической теории определение отношения «меньше на» («больше на») естественным образом вытекает из определения отношения «меньше». Действительно, из того, что а < b тогда и только тогда, когда существует такое натуральное число с, что а + с = b, имеем, что «а меньше b на с» или «b больше а на с».

Если n(А) = а, n(В) = b и установлено, а < b, то. исходя из теоретико-множественного смысла отношения «меньше», в множестве В можно выделить собственное подмножество В₁, равномощное множеству А, и непустое множество В\В₁. Если число элементов в множестве В\В₁. обозначить через с (с ¹ 0), то в множестве В будет столько же элементов, сколько их в А, и еще с элементов:

n(В) = n(В) + n(В\ В₁.) или b = а + с, что означает, что «а меньше b на с» (или «больше а на с»). Итак, с теоретико-множественной точки зрения «а меньше b на с» (или «b больше а на с») означает, что если n(А) = а, n(В) = b, то в множестве В содержится столько элементов, сколько их в А, и еще с элементов.

Так как с= п(В\В). где В Ì В, n(В) = b, n(В₁ ) = а, то, по опреде­лению разности, с = а - b. Следовательно, чтобы узнать, на сколько одно число меньше или больше другого, надо из большего числа вы­честь меньшее.

Взаимосвязь действии над множествами с действиями над числами, теоретико-множественный смысл отношений «меньше на» и «больше на» позволяют обосновывать выбор действий при решении задач с этими отношениями.

Рассмотрим, например, такую задачу: «На столе 5 чашек, а ложек на 2 больше. Сколько на столе ложек? » Легко видеть, что она решает­ся при помощи сложения. Почему?

В задаче речь идет о двух множествах: множестве чашек (А) и мно­жестве ложек (В). Известно, что в первом множестве 5 элементов, т.е. п(А) = 5. Число элементов во втором множестве требуется найти при условии, что в нем на 2 элемента больше, чем в первом. Отношение «больше на 2» означает, что в множестве В элементов столько же, сколько их в А. и еще 2 элемента (рис. 114). Применимо к тем множе­ствам, о которых идет речь в задаче, это означает, что ложек на столе столько же, сколько чашек, и еще 2. Используя правило подсчета элементов в объединении непересекающихся множеств, получаем: п(В) = п(В) + п(В\ В₁ ) =5+2. Так как 5 + 2 = 7, то получим ответ на вопрос задачи: на столе 7 ложек.

О О О О О

Х Х Х Х Х Х Х

Рис. 114

Рассмотрим еще одну задачу: «На столе 5 чашек, а ложек на 2 меньше. Сколько на столе ложек? » Выясним, почему она решается при помощи вычитания.

В задаче речь идет о двух множествах: множестве чашек (А) и мно­жестве ложек (В). Известно, что в первом множестве 5 элементов, n (А)= 5. Число элементов во втором множестве надо найти при условии, что в нем на 2 элемента меньше, чем в первом. Отношение меньше на 2» означает, что в множестве В элементов столько же, сколько их в А, но без двух (рис. 115). Применимо к тем множествам, о которых идет речь в задаче, это означает, что ложек на столе столько же, сколько чашек, но без двух. Таким образом, п(А) = п(А\А₁ ) = 5 - 2. Так как 5-2=3, то получим ответ на вопрос задачи: на столе 3 ложки.

О О О О О

Х Х Х

Рис. 115

Упражнения

1. Объясните с теоретико-множественной точки зрения смысл выражений:

а) 8-3; 6)4-4; в) 4 - 0.

2.. Объясните, почему нижеприведенные задачи решаются при помощи вычитания.

а) В корзине было 7 морковок, 3 из них отдали кроликам. Сколько морковок осталось?

б) На столе 8 чашек, их на 3 больше, чем стаканов. Сколько стаканов на столе?

в)На верхней полке шкафа 7 книг, а на нижней 4. На сколько книг больше на верхней полке, чем на нижней?

3. Обоснуйте выбор действий при решении задач.

а) На одной полке 5 книг, на другой на 3 больше. Сколько книг на двух полках?

б) Во дворе гуляли 6 мальчиков, а девочек на 2 меньше. Сколько детей гуляло во дворе?

4. Запишите, используя символы, правило вычитания суммы из числа и дайте его теоретико-множественное истолкование.

Лекция 37.Произведение и частное целых неотрицательных чисел

Определение произведения, его существование и единственность. Законы умножения. Определение произведения через сумму.

Определение частного целого неотрицательного числа на натуральное, его существование и единственность. Теоретико-множественный смысл правил деления суммы и произведения на число.


Поделиться:



Популярное:

  1. БЕССМЫСЛЕННОСТЬ И ПСИХОТЕРАПИЯ
  2. Бессолевая Диета Абсолютно Бессмысленна
  3. Билет №24 1.идеал.идеал и реальный мир. (?)Проблема идеального. Знак. Значение. Смысл.
  4. В этом основной смысл медитации: помочь вам выбраться из ума, помочь вам выбраться из различающего сознания и проложить дорогу, по которой вы могли бы войти в свидетельствующее сознание.
  5. Ваши слова воздействуют на слушателя как правда, как несомненный здравый смысл. Происходит ли это потому, что Вы исходите из Ваших фундаментальных ощущений, а у слушателя нет опыта подобных ощущений?
  6. Вовлеченность: главный терапевтический ответ на бессмысленность
  7. Вопрос 15: Сознание как предмет философского осмысления. Многомерностьи полифункциональность сознания, философия и когнитивные науки о структуре и функциях сознания
  8. Вопрос. Проблема личности и смысла жизни в «философии абсурда» А. Камю.
  9. Вопрос. Роман Ф.М.Достоевского «Идиот». Смысл названия. Какой он князь Мышкин? Мышкинский путь спасения человечества. Удался ли он?
  10. Всегда помни: слушая меня, пытайся понять мой смысл. Это трудно, но ты должен попытаться. В самой этой попытке ты выберешься из своих собственных смыслов.
  11. Второе начало термодинамики и его статистический смысл Гипотиза Больцмана о связи энтропий и вероятности состояния.
  12. Второй закон: 8-2. «Закон Целесообразности или


Последнее изменение этой страницы: 2016-06-04; Просмотров: 1132; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.013 с.)
Главная | Случайная страница | Обратная связь