Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Упорядоченность множества натуральных чисел



Как известно, множество натуральных чисел можно упорядочить при помощи отношения «меньше». Но правила построения аксиома­тической теории требуют, чтобы это отношение было не только опре­делено, но и сделано это на основе уже определенных в данной теории понятий. Сделать это можно, определив отношение «меньше» через сложение.

Определение. Число а меньше числа b (а < b) тогда и только тогда, когда существует такое натуральное число с, что а + с = b.

При этих условиях говорят также, что число b больше аи пишут b > а.

Теорема 12. Для любых натуральных чисел а и b имеет место одно и только одно из трех отношений: а = b, а > b, а < b.

Доказательство этой теоремы мы опускаем. Из этой теоремы вы­текает, что если

а ¹ b, то либо а < b, либо а > b, т.е. отношение «меньше» обладает свойством связанности.

Теорема 13. Если а < b и b < с. то а < с.

Доказательство. Эта теорема выражает свойство транзитив­ности отношения «меньше».

Так как а < b и b < с. то, по определению отношения «меньше», найдутся такие натуральные числа к и /, что b = а + к и с = b + I. Но тогда с = (а + к) + / и на основания свойства ассоциативности сло­жения получаем: с = а + (к + /). Поскольку к + I - натуральное число, то, согласно определению «меньше», а < с.

Теорема 14. Если а < b, то неверно, что b < а. Доказательство. Эта теорема выражает свойство антисиммет­ричности отношения «меньше».

Докажем сначала, что ни для одного натурального числа а не вы-! >! •■ • )ея отношение а < а. Предположим противное, т.е. что а < а имеет место. Тогда, по определению отношения «меньше», найдется такоенатуральное число с, что а + с = а, а это противоречит теореме 6.

Докажем теперь, что если а < b, то неверно, что b < а. Предположим противное, т.е. что если а < b, то b < а выполняется. Но из этих равенств по теореме 12 имеем а < а, что невозможно.

Так как определенное нами отношение «меньше» антисимметрично и транзитивно и обладает свойством связанности, то оно является отношением линейного порядка, а множество натуральных чисел линейно упорядоченным множеством.

Из определения «меньше» и его свойств можно вывести известные свойства множества натуральных чисел.

Теорема 15. Из всех натуральных чисел единица является наименьшим числом, т.е. I < а для любого натурального числа а¹ 1.

Доказательство. Пусть а - любое натуральное число. Тогда возможны два случая: а = 1 и а ¹ 1. Если а = 1, то существует натуральное число b, за которым следует а: а = b ' = b + I = 1 + b, т.е., по определению отношения «меньше», 1 < а. Следовательно, любое натураль­ное равно 1 либо больше 1. Или, единица является наименьшим натуральным числом.

Отношение «меньше» связано со сложением и умножением чисел свойствами монотонности.

Теорема 16.

а = b => а + с = b + с и а с = b с;

а < b => а + с < b + с и ас < bс;

а > b => а + с > b + с и ас > bс.

Доказательство. 1) Справедливость этого утверждения вытекает из единственности сложения и умножения.

2) Если а < b, то существует такое натуральное число k, что а + k = b.
Тогда b + с = (а + к) + с = а + (к + с) = а + (с + к) = (а + с) + к. Равенство b + с = (а + с) + к означает, что а + с < b + с.

Точно так же доказывается, что а < b => ас < bс.

3) Доказывается аналогично.

Теорема 17 (обратная теореме 16).

1) а + с = Ь + с или ас ~ Ьс-Þ а = Ь

2) а + с < Ь + с или ас < Ьс Þ а < Ь:

3) а + с > Ь + с или ас > Ьс Þ а > Ь.

Доказательство. Докажем, например, что из ас < bс следует а < b Предположим противное, т.е. что заключение теоремы не выполняется. Тогда не может быть, что а = b. так как тогда бы выполнялось равенство ас = bс (теорема 16); не может быть и а > b, так как тогда бы ас > bс (теорема! 6). Поэтому, согласно теореме 12, а < b.

Из теорем 16 и 17 можно вывести известные правила почленного сложения и умножения неравенств. Мы их опускаем.

Теорема 18. Для любых натуральных чисел а и b; существует та­кое натуральное число n, что п b> а.

Д о к а з а т е л ь с т в о. Для любого а найдется такое число п, что п > а. Для этого достаточно взять п = а + 1. Перемножая почленно неравен­ства п > а и b > 1, получаем пb > а.

Из рассмотренных свойств отношения «меньше» вытекают важные особенности множества натуральных чисел, которые мы приводим без доказательства.

1. Ни для одного натурального числа а не существует такого натурального числа п, что а < п < а + 1. Это свойство называется свойством
дискретности
множества натуральных чисел, а числа а и а + 1 называют соседними.

2. Любое непустое подмножество натуральных чисел содержит
наименьшее число.

3. Если М - непустое подмножество множества натуральных чисел
и существует такое число b, что для всех чисел х из М выполняется не­
равенство х < b, то в множестве М есть наибольшее число.

Проиллюстрируем свойства 2 и 3 на примере. Пусть М - множество двузначных чисел. Так как М есть подмножество натуральных чисел и для всех чисел этого множества выполняется неравенство х < 100, то в множестве М есть наибольшее число 99. Наименьшее число, содержа­щееся в данном множестве М, - число 10.

Таким образом, отношение «меньше» позволило рассмотреть (и в ряде случаев доказать) значительное число свойств множества нату­ральных чисел. В частности, оно является линейно упорядоченным, дискретным, в нем есть наименьшее число 1.

С отношением «меньше» («больше») для натуральных чисел млад­шие школьники знакомятся в самом начале обучения. И часто, наряду с его теоретико-множественной трактовкой, неявно используется оп­ределение, данное нами в рамках аксиоматической теории. Например, учащиеся могут объяснить, что 9 > 7 так как 9 - это 7+2. Нередко и неявное использование свойств монотонности сложения и умножения. Например, дети объясняют, что «6 + 2 < 6 + 3, так как 2 < 3».

Упражнения

1, Почему множество натуральных чисел нельзя упорядочить при помощи отношения «непосредственно следовать за»?

Сформулируйте определение отношения а > b и докажите, что оно транзитивно и антисимметрично.

3. Докажите, что если а, b, с - натуральные числа, то:

а) а < b Þ ас < bс;

б) а + с < b + сÞ > а < Ь.

 

4. Какие теоремы о монотонности сложения и умножения могут
использовать младшие школьники, выполняя задание «Сравни, не выполняя вычислений»:

а) 27 + 8... 27 + 18;

б) 27- 8... 27 -18.

5. Какие свойства множества натуральных чисел неявно используют младшие школьники, выполняя следующие задания:

А) Запиши числа, которые больше, чем 65, и меньше, чем 75.

Б) Назови предыдущее и последующее числа по отношению к числу 300(800, 609, 999).

В) Назови самое маленькое и самое большое трехзначное число.

Вычитание

При аксиоматическом построении теории натуральных чисел вычитание обычно определяется как операция, обратная сложению.

Определение. Вычитанием натуральных чисел а и b называется операция, удовлетворяющая условию: а — b = с тогда и только тогда, когда b+с = а.

Число а - b называется разностью чисел а и b, число а – уменьшаемым, ачисло b - вычитаемым.

Теорема 19. Разность натуральных чисел а - b существует тогда и только тогда, когда b < а.

Доказательство. Пусть разность а - b существует. Тогда, по определению разности, найдется такое натуральное число с, что b + с = а, а этозначит, что b < а.

Если же b < а, то, по определению отношения «меньше», существует такое натуральное число с, что b + с = а. Тогда, по определению разности, с = а - b, т.е. разность а - b существует.

Теорема 20. Если разность натуральных чисел а и b существует, то она единственна.

Доказательство. Предположим, что существует два различных значения разности чисел а и b;: а – b = с₁ и а - b = с₂ , причем с₁ ¹ с₂ . Тогда по определению разности, имеем: а = b + с₁, и а = b + с₂ : . Отсюда следует, что b + с ₁ = b + с₂ : и на основании теоремы 17 заключаем, с₁ = с₂.. Пришли к противоречию с допущением, значит, оно неверное, а верна данная теорема.

Исходя из определения разности натуральных чисел и условия ее существования, можно обосновать известные правила вычитания числа из суммы и суммы из числа.

Теорема 21. Пусть а. b и с - натуральные числа.

а) Если а > с, то (а + b) - с = (a - с) + b.

б) Если b > с. то (а + b) - с - а + (b - с).

в) Если а > c и b > с. то можно использовать любую из данных формул.
Доказательство. В случае а) разность чисел а и c существует, так как а > с. Обозначим ее через х: а - с = х. откуда а = с + х. Если + b) - с = у. то, по определению разности, а + b = с + у. Подставим в это равенство вместо а выражение с + х: (с + х) + b = с + у. Воспользу­емся свойством ассоциативности сложения: с + (х + b) = с + у. Преоб­разуем это равенство на основе свойства монотонности сложения, получим:

х + b = у. .Заменив в данном равенстве х на выражение а - с, будем иметь (а - г) + b = у. Таким образом, мы доказали, что если а > с, то (а + b) - с = (a - c) + b

Аналогично проводится доказательство и в случае б).

Доказанную теорему можно сформулировать в виде правила, удобного для запоминания: дли того чтобы вычесть число из суммы, достаточно вычесть это число из одного слагаемого суммы и к полу­ченному результату прибавить другое слагаемое.

Теорема 22. Пусть а, b и с - натуральные числа. Если а > b + с, то а - (b + с) = (а - b) - с или а - (b + с) = (а - c) - b.

Доказательство этой теории аналогично доказательству теоремы 21.

Теорему 22 можно сформулировать в виде правила, для того чтобы вычесть из числа сумму чисел, достаточно вычесть из этого числа по­следовательно каждое слагаемое одно за другим.

В начальном обучении математике определение вычитания как действия, обратного сложению, в общем виде, как правило, не дается, но им постоянно пользуются, начиная с выполнения действий над одно­значными числами. Учащиеся должны хорошо понимать, что вычита­ние связано со сложением, и использовать эту взаимосвязь при вычис­лениях. Вычитая, например, из числа 40 число 16, учащиеся рассуж­дают так: «Вычесть из 40 число 16 - что значит найти такое число, при сложении которого с числом 16 получается 40; таким числом будет 24, так как 24 + 16 = 40. Значит. 40 - 16 = 24».

Правила вычитания числа из суммы и суммы из числа в начальном курсе математики являются теоретической основой различных прие­мов вычислений. Например, значение выражения (40 + 16) - 10 можно найти, не только вычислив сумму в скобках, а затем вычесть из нее число 10, но и таким образом;

а) (40 + 16) - 10 = (40 - 10) + 16 = 30 + 16 = 46:

б) (40 + 16) - 10 = 40 +(16- 10) = 40 + 6 = 46.

Упражнения

1. Верно ли, что каждое натуральное число получается из непосредственно следующего вычитанием единицы?

2. В чем особенность логической структуры теоремы 19? Можно ли ее сформулировать, используя слова «необходимо и достаточно»?

3. Докажите, что:

а) если b > с, то (а + b) - с = а + (b - с);

б) если а > b + с, то а - ( b + с) = (а - b) - с.

4.Можно ли, не выполняя вычислений, сказать, значения каких выражений будут равны:

а) (50 + 16)- 14; г) 50 + (16 -14),

б) (50 - 14) + 16; д) 50 - (16 - 14);
в) (50 - 14) - 16, е) (50 + 14) - 16.

а) 50 - (16 + 14); г) (50 - 14) + 16;

б) (50 - 16) + 14; д) (50 - 14) - 16;

в) (50 - 16) - 14; е) 50 - 16- 14.

5. Какие свойства вычитания являются теоретической основой следующих приемов вычислении, изучаемых в начальном курсе математики:

 

а) 12-5

12 - 2-3 12 -5 = 7

б) 16-7 = 16-6 - П;

в) 48 - 30 = (40 + 8} - 30 = 40 + 8 =18;

г) 48 - 3 = (40 + 8) - 3 = 40 + 5 = 45.

6. Опишите возможные способы вычисления значения выражения вида. а - b - с и проиллюстрируйте их на конкретных примерах.

7. Докажите, что при b < а и любых натуральных c верно равенство (a – b) с = ас - bс.

Указание. Доказательство основывается на аксиоме 4.

8. Определите значение выражения, не выполняя письменных вычислений. Ответы обоснуйте.

а) 7865 × 6 – 7865 × 5: б) 957 × 11 - 957; в) 12 × 36 – 7 × 36.

Деление

При аксиоматическом построении теории натуральных чисел деление обычно определяется как операция, обратная умножению.

Определение. Делением натуральных чисел а и b называется операция, удовлетворяющая условию: а: b = с тогда и только тогда, когда b× с = а.

Число а: b называется частным чисел а и b, число а делимым, число b - делителем.

Как известно, деление на множестве натуральных чисел существует не всегда, и такого удобного признака существования частного, какой существует для разности, нет. Есть только необходимое условие суще­ствования частного.

Теорема 23. Для того чтобы существовало частное двух нату­ральных чисел а и b, необходимо, чтобы b < а.

Доказательство. Пусть частное натуральных чисел а и b суще­ствует, т.е. есть такое натуральное число c, что bс = а. Так как для любого натурального числа 1 справедливо неравенство 1 £ с, то, ум­ножив обе его части на натуральное число b, получим b £ bс. Но bс = а, следовательно, b £ а.

Теорема 24. Если частное натуральных чисел а и b существует, то оно единственно.

Доказательство этой теоремы аналогично доказательству теоремы о единственности разности натуральных чисел.

Исходя из определения частного натуральных чисел и условия его существования, можно обосновать известные правила деления суммы (разности, произведения) на число.

Теорема 25. Если числа а и b делятся на число с, то и их сумма а + b делится на с, причем частное, получаемое при делении суммы а + b на число с, равно сумме частных, получаемых при делении а на с и b на с, т.е. (а + b): с = а: с + b: с.

Доказательство. Так как число а делится на с, то существует такое натуральное число х = а; с, что а = сх. Аналогично существует такое натуральное число у = b: с, что

b = су. Но тогда а + b = сх + су =- с(х + у). Это значит, что а + b делится на c, причем частное, полу­чаемое при делении суммы а + b на число c, равно х + у, т.е. ах + b: с.

Доказанную теорему можно сформулировать в виде правила деле­ния суммы на число: для того чтобы разделить сумму на число, доста­точно разделить на это число каждое слагаемое и полученные резуль­таты сложить.

Теорема 26. Если натуральные числа а и b делятся на число с и а > b, то разность а - b делится на c, причем частное, получаемое при делении разности на число c, равно разности частных, получаемых при делении а на с и b на c, т.е. (а - b): с = а: с - b: с.

Доказательство этой теоремы проводится аналогично доказатель­ству предыдущей теоремы.

Эту теорему можно сформулировать в виде правила деления раз­ности на число: для того, чтобы разделить разность на число, доста­точно разделить на это число уменьшаемое и вычитаемое и из первого частного вычесть второе.

Теорема 27. Если натуральное число а делится на натуральное число с, то для любого натурального числа b произведение аb делится на с. При этом частное, получаемое при делении произведения аb на число с, равно произведению частного, получаемого при делении а на с, ичисла b: (а × b): с - (а: с) × b.

Д о к азательство. Так как а делится на с, то существует такое натуральное число х, что а: с = х, откуда а = сх. Умножив обе части равенства на b, получим аb = (сх)b. Поскольку умножение ассоциативно, то (сх) b = с(х b). Отсюда (а b): с = х b= (а: с) b. Теоремуможно сформулировать в виде правила деления произведения на число: для того чтобы разделить произведение на число, достаточно разделить на это число один из множителей и полученный результат умножить на второй множитель.

В начальном обучении математике определение деления как операции обратной умножению, в общем виде, как правило, не дается, но им постоянно пользуются, начиная с первых уроков ознакомления с делением. Учащиеся должны хорошо понимать, что деление связано с ум­ножением, и использовать эту взаимосвязь при вычислениях. Выполняя деление, например, 48 на 16, учащиеся рассуждают так: «Разделить 48 на 16 - это значит найти такое число, при умножении которого на 16 получится 48; таким числом будет 3, так как 16× 3 = 48. Следовательно, 48: 16 = 3.

Упражнения

1. Докажите, что:

а) если частное натуральных чисел а и b существует, то оно единственно;

б) если числа а и b делятся на с и а > b, то (а - b): с = а: с - b: с.
2. Можно ли утверждать, что все данные равенства верные:
а) 48: (2× 4) = 48: 2: 4; б) 56: (2× 7) = 56: 7: 2;

в) 850: 170 =850: 10: 17.

Какое правило является обобщением данных случаев? Сформулируйте его и докажите.

3. Какие свойства деления являются теоретической основой для
выполнения следующих заданий, предлагаемых школьникам начальных классов:

можно ли, не выполняя деления, сказать, значения каких выражений будут одинаковыми:

а) (40+ 8): 2; в) 48: 3; д) (20+ 28): 2;

б) (30 + 16): 3; г)(21+27): 3; е) 48: 2;

. верны ли равенства:

а) 48: 6: 2 = 48: (6: 2); б) 96: 4: 2 = 96: (4-2);

в) (40 - 28): 4 = 10-7?

4. Опишите возможные способы вычисления значения выражения
вида:

а) + b): с; б) а: b: с; в) ( а × b): с .

Предложенные способы проиллюстрируйте на конкретных примерах.

5. Найдите значения выражения рациональным способом; свои
действия обоснуйте:

а) (7× 63): 7; в) (15× 18): (5× 6);

б) (3× 4× 5): 15; г) (12 × 21): 14.

6. Обоснуйте следующие приемы деления на двузначное число:

а) 954: 18 = (900 + 54): 18 = 900: 18 + 54: 18 =50 + 3 = 53;

б) 882: 18 = (900 - 18): 18 = 900: 18 - 18: 18 = 50 - 1 =49;

в) 480: 32 = 480: (8 × 4) = 480: 8: 4 = 60: 4 = 15:

г) (560 × 32): 16 = 560(32: 16) = 560× 2 = 1120.

7. Не выполняя деления уголком, найдите наиболее рациональным
способом частное; выбранный способ обоснуйте:

а) 495: 15; в) 455: 7; д) 275: 55;

6) 425: 85; г) 225: 9; е) 455: 65.

Лекция 34.Свойства множества целых неотрицательных чисел

План:

1. Множество целых неотрицательных чисел. Свойства множества целых неотрицательных чисел.

2. Понятие отрезка натурального ряда чисел и счета элементов конечного множества. Порядковые и количественные натуральные числа.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-06-04; Просмотров: 2469; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.053 с.)
Главная | Случайная страница | Обратная связь