Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Электрофизические характеристики материалов. Диэлектрическая и магнитная проницаемости.
Особенностями использования материалов в электроэнергетике является то, что они эксплуатируются в условиях воздействия электрических полей, и в несколько меньшей степени, в условиях воздействия магнитных полей. Основными процессами, происходящими под действием этих полей являются поляризация вещества, электропроводность, намагничивание вещества. В предыдущей лекции рассматривалась электропроводность. В этой лекции будут рассмотрены следующие вопросы: Диэлектрическая проницаемость и электрические поля в диэлектриках. Магнитная проницаемость и магнитные поля. Прежде чем приступить к лекции хотелось бы напомнить термины и определения. Электрическое поле - это вектор, направленный от положительного заряда к отрицательному заряду.Численно оно равно силе, действующей на единичный заряд (заряд в один кулон). Размерность напряженности поля в системе единиц СИ - В/м. С напряжением между точками a и b оно связано следующим выражением:
а с потенциалом j: E = -grad j. (3.2) В однородном поле, в межэлектродном зазоре d, эти выражения упрощаются U = E·d, или E = U/d (3.3) Диэлектрическая проницаемость материалов. В начало лекции Определение этой величины вы должны помнить еще из школы. Давайте вспомним. Если взять плоский конденсатор в вакууме, то заряд на каждой его пластине равен (по модулю): (3.4) где e0 - диэлектрическая постоянная, или диэлектрическая проницаемость вакуума, e0 = 8.85 10-12 Ф/м, S-площадь каждой из пластин, d - зазор между пластинами, U - напряжение между ними. Разделив на площадь и перейдя к плотности заряда на обкладке получим s = e0E. Если в межэлектродное пространство ввести диэлектрик, то что произойдет? Все зависит от того, подключен заряженный конденсатор к источнику или отключен. В подключенном конденсаторе напряжение между пластинами принудительно поддерживается, но заряд на каждой пластине увеличивается до нового значения Qm. Отношение Qm/Q0 = e называется диэлектрической проницаемостью материала. Из самого определения видно, что диэлектрическая проницаемость материала является безразмерной величиной. Перейдя к плотности заряда на обкладке в случае диэлектрика получим s = e0eE. Откуда притекает дополнительный заряд? Ясно, что заряд притекает из источника. В отключенном от источника заряженном конденсаторе ситуация несколько отличается. Заряд не может измениться, т.к. ему некуда утекать и неоткуда притекать. В этом случае изменится другой параметр. Оказывается уменьшаются напряжение на конденсаторе и, соответственно, напряженность поля в конденсаторе. Коэффициент ослабления поля тот же самый, как и в случае увеличения заряда при подключенном источнике, т.е. он равен e. Это второе определение диэлектрической проницаемости. За счет чего это происходит? Рассмотрим этот вопрос подробнее. Здесь придется обратиться к понятию поляризации. Как известно, молекулы состоят из атомов, окруженных электронными оболочками. При этом электроны могут равномерно распределяться по молекуле, а могут и концентрироваться на каких-либо атомах. В первом случае говорят, что молекула неполярная. Пример - молекула водорода или атом гелия, или молекула бензола. Во втором случае в молекуле образуются области с положительным и отрицательным зарядом. Если в молекуле можно выделить направление, вдоль которого с одной стороны можно расположить положительные заряды, а с другой стороны - отрицательные, то такая молекула называется полярной или дипольной. Дипольный момент молекулы является вектором, направленным от отрицательного к положительному заряду. Численно он равен произведению расстояния между зарядами на модуль заряда. В неполярной молекуле под действием электрического поля происходит смещение электронных оболочек. Возникает индуцированный дипольный момент у молекулы, молекула поляризуется. Поляризация за счет смещения электронов называется электронной. Возникающий дипольный момент невелик. Диэлектрическая проницаемость неполярных жидкостей и твердых диэлектриков также невелика, она не превышает 3. Диэлектрики, состоящие из неполярных молекул называются неполярными диэлектриками. В полярной молекуле под действием поля происходит поворот диполя в направлении напряженности электрического поля. В этом случае, в зависимости от значения дипольного момента молекулы и концентрации молекул поляризация может быть значительной. Для жидкостей и твердых диэлектриков с дипольной поляризацией диэлектрическая проницаемость достигает примерно 100 и даже больше. Диэлектрики, состоящие из полярных молекул называются полярными диэлектриками. В некоторых твердых диэлектриках может существовать особый вид поляризации: спонтанная, или доменная поляризация. Она существует только в кристаллах, но далеко не во всех, в аморфных телах ее не бывает. Оказывается иногда в среде возникают самопроизвольно микроскопические области с поляризацией, которая получается при смещении положительно заряженных ионов решетки в одну сторону, а отрицательно заряженных ионов в другую сторону. Микрообласть со спонтанной поляризацией называется доменом. Обычно размер доменов составляет микроны и десятки микрон. Суммарный дипольный момент любого образца равен нулю, т.к. дипольные моменты доменов направлены в разные стороны. Если дипольные моменты доменов хаотически направлены в разные стороны, то такой диэлектрик называется сегнетоэлектриком. Если домены существуют парами, причем у каждой пары дипольные моменты направлены в противоположные стороны, такой диэлектрик называется антисегнетоэлектриком. Под действием электрического поля домены в диэлектрике поворачиваются в направлении электрического поля, как гигантские диполи. Только в отличии от диполей, где молекулы физически поворачиваются, в доменах перестраивается структура, так, что результирующий вектор поляризации каждого домена чуть-чуть смещается в направлении поля. Диэлектрическая проницаемость сегнетоэлектриков и антисегнетоэлектриков велика, она может достигать десятков тысяч. Суммарный дипольный момент единицы объема называется поляризацией . Вектор поляризации, появляющейся под действием электрического поля, направлен вдоль направления электрического поля. Его значение связано с напряженностью поля P = e0cE, где c- диэлектрическая восприимчивость. Диэлектрическая проницаемость связана с восприимчивостью e = 1+c. В газообразном диэлектрике количество дипольных моментов мало вследствие низкой плотности газа, поэтому диэлектрическая проницаемость мало отличается от единицы, даже для полярных газов (Отличие в третьем, четвертом знаке после запятой). Именно поляризация и вызывает увеличение плотности заряда на обкладках конденсатора при подключенном источнике. Значение плотности заряда на обкладках конденсатора s = P+e0E. Естественно, что в случае вакуума поляризация равна нулю, диэлектрическая проницаемость в точности равна единице. В электродинамике вводят понятие вектора электрического смещения = e0eE (3.5.) который определяет заряд как в случае вакуума, так и в случае диэлектрика. Другие названия этого термина - электрическая индукция или электростатическая индукция. Размерность индукции Кл/м2. Кроме приведённых выражений полезно будет также вспомнить соотношения для электрического смещения D:
Энергия электрического поля в среде связана с диэлектрической проницаемостью W = e0× e× E2/2 или W = DE/2, или W = D2/2e. Для устройств, содержащих в себе электрические поля важно понимать как изменяется напряженность электрического поля при использовании комбинации двух диэлектриков с разной диэлектрической проницаемостью. Если расположить диэлектрики так, что электрическое поле перпендикулярно поверхности раздела, то значения напряжённости поля в каждом материале обратно пропорциональны диэлектрическим проницаемостям:
Рассмотрим простую задачку. В плоский конденсатор с зазором d и напряжением U вводят пластину диэлектрика, которая имеет толщину d1, диэлектрическую проницаемость e. Как изменится поле в оставшейся части зазора и какое поле будет в диэлектрике? Несложно решить эту задачу воспользовавшись выражениями (3.3) и (3.7), которые для нашего случая можно переписать как Ев(d-d1) + Eдd1= U (3.8) Евeв= Eдeд Решив систему уравнений получим: (3.9) Анализируя эти выражения можно увидеть, что поле в газовой прослойке всегда увеличено, а в диэлектрической - уменьшено. Емкость конденсатора в этом случае увеличена, но незначительно по сравнению с емкостью конденсатора без диэлектрика. В случае, когда электрическое поле параллельно поверхности раздела, напряженности поля в материалах одинаковы. Этот случай можно реализовать, вводя в конденсатор диэлектрик, толщины, равной величине межэлектродного зазора в конденсаторе. Емкость, при этом, увеличивается существенно, пропорционально объемной доле диэлектрика. Для понимания процессов в диэлектриках важно знать значения полей в случае различных электродов. Наиболее часто используются модельные представления электродных систем, к которым с той или иной степенью приближения можно свести многие реальные системы электродов. Это три типа полей: - плоско- параллельное, - радиально-цилиндрическое, или аксиальное - радиально-сферическое. Ниже приводятся описание этих полей и необходимые для расчета формулы. Плоско-параллельное поле. Здесь эквипотенциальные поверхности (поверхности уровня) представляют собой параллельные плоскости, а линии индукции, совпадающие с направлением вектора напряженности поля (которая во всех точках поля одинакова), - перпендикулярны этим плоскостям.
В плоско-параллельном поле напряженность Е одинакова во всех точках. Поэтому:
Радиально-цилиндрическое поле. Эквипотенциальными в этом поле являются коаксиальные (имеющие общую ось) цилиндрические поверхности, а линии поля располагаются в радиальном направлении. Распределение напряженности электрического поля:
Значение емкости:
r1 - радиус внутреннего цилиндра, r2 - радиус внешнего цилиндра Радиально-сферическое поле. В этом поле поверхности уровня - это сферы с общим центром, а линии индукции направлены по радиусам. Распределение напряженности электрического поля:
Значение емкости:
Причем емкость шара по отношению к сфере бесконечного радиуса
Ёмкость полушария в два раза меньше емкости шара. Магнитная проницаемость. В начало лекции Аналогично рассмотрению диэлектрической проницаемости, связывающей электрическую индукцию с напряженностью электрического поля, магнитная проницаемость связывает магнитную индукцию B с напряженностью магнитного поля H. B=m0× m× H (3.15) Здесь m0- магнитная постоянная или магнитная проницаемость вакуума. m0 = 4p× 10-7 Гн/м. Можно ввести понятие намагниченности m0M = B - m0H. Этот фактор вносит в магнитную индукцию именно среда, т.е. намагниченность является характеристикой среды. Аналогично поляризации среды в электрическом поле намагниченность складывается из намагниченностей отдельных атомов, которые называются магнитными моментами атомов M = Smi. Намагниченность обычно пропорциональна напряженности магнитного поля M = cм × Н (3.16) где cм - магнитная восприимчивость вещества. Значения m и cм связаны m = cм+1 Энергия магнитного поля W = B× H/2 = m0× m× H2/2 = B2/2m0× m Магнитное поле имеет отличия от электрического поля. Электрическое поле создается зарядами, магнитное - токами. Силовые линии электрического поля начинаются на положительном заряде и, обязательно, заканчиваются на отрицательном заряде. Силовые линии магнитного поля замкнуты, они окружают линии тока. В электрическом поле заряд порождает индукцию поля. D = q/4pe0× e× r2 (3.17) В магнитном поле ток порождает напряженность магнитного поля (закон Био-Савара). H = I/2pr. (3.18) Приведем еще выражение для напряженности поля и индукции в длинном соленоиде, которое специфично именно для магнитного поля. H = n× I, B = m0× m× n× I (3.19) где n- число витков катушки на единицу длины. В электрическом поле сила, действующая на заряд, пропорциональна напряженности поля (закон Кулона). В магнитном поле, сила действующая на заряд пропорциональна индукции. Еще одно принципиальное отличие состоит в том, что диэлектрическая проницаемость не может быть меньше 1, тогда как магнитная проницаемость может быть меньше 1 в некоторых материалах.. Различные материалы по разному ведут себя в магнитном поле и, соответственно имеют различную магнитную проницаемость. Диамагнетики - вещества, имеющие магнитную проницаемость меньше 1. Подавляющее большинство веществ являются диамагнетиками. Диамагнетизм проявляется тогда, когда атомы и молекулы не имеют магнитного момента в отсутствии магнитного поля, а намагниченность создается только за счет действия магнитного поля на электроны молекул. При этом магнитная восприимчивость cм< 0. По порядку величины значение восприимчивости составляет (-10-6). Эти вещества содержат атомы и электроны, имеющие собственный магнитный момент, который связан с орбитальным движением электронов или с собственным моментом импульса электрона, т.н. спином. Парамагнетиками являются кислород, магний, натрий (NaCl - диамагнетик), кальций, титан, палладий. Это железо, никель, кобальт и ряд более редких веществ. На основе этих элементов изготавливаются магнитные материалы. Примеры ферримагнетиков и антиферромагнетиков - ферриты, соединения типа Fe2O3 c MeO, где Ме - двухвалентный металл. Популярное:
|
Последнее изменение этой страницы: 2016-06-05; Просмотров: 1425; Нарушение авторского права страницы