|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Оценивание параметров и свойства выборочных оценок
При исследовании различных параметров генеральной совокупности на основе выборки возможно лишь получение оценок этих параметров. Необходимые оценки строятся на основе ограниченного набора данных, что влечет за собой определенную вероятность погрешности в статистических выводах. Заметим, что значения оценок могут изменяться от выборки к выборке. Процесс нахождения оценок неизвестного генерального параметра θ, от которого зависит распределение СВ Х, будем называть оцениванием. Цель любого оценивания – получение наиболее точного значения оцениваемой характеристики (наилучшей оценки). Обычно на начальном этапе эконометрических исследований берутся выборочные числовые характеристики, рассмотренные в предыдущем параграфе. Затем, исследуя соответствующую оценку, ее уточняют таким образом, чтобы она удовлетворяла основным целям оценивания. Различают два вида оценок параметров распределения генеральной совокупности – точечные и интервальные. Точечной оценкой Рассмотрим свойства, выполнимость которых желательна для того, чтобы оценка была признана удовлетворительной. Качество оценок будем характеризовать следующими основными параметрами: несмещенность, эффективность и состоятельность. Оценка Несмещенная оценка Оценка называется асимптотически эффективной, если с увеличением объема выборки ее дисперсия стремится к нулю (Dn( Оценка
для любого сколь угодно малого ε > 0. Другими словами, состоятельной является такая оценка, которая, согласно закону больших чисел, дает истинное значение параметра при достаточно большом объеме выборки. Оценки, являющиеся линейными функциями от выборочных наблюдений, называются линейными. Важную роль в эконометрике играют наилучшие линейные несмещенные оценки, которые имеют наименьшую дисперсию среди всех возможных оценок данного класса. Наиболее известными методами нахождения точечных оценок параметров генеральной совокупности являются метод моментов, метод максимального правдоподобия, метод наименьших квадратов. Здесь мы кратко остановимся на описании метода максимального правдоподобия, поскольку метод наименьших квадратов будет рассмотрен в последующих главах как основной метод нахождения оценок параметров регрессионных эконометрических моделей. Пусть СВ Х представлена выборкой x1, x2, …, xn и имеет плотность распределения f(x, θ ), зависящую от неизвестного параметра θ. Согласно методу максимального правдоподобия, в качестве оценки параметра θ принимается такое значение
выражающую плотность вероятностей совместного появления результатов выборки x1, x2, …, xn. В большинстве случаев более эффективно рассматривать логарифмическую функцию правдоподобия l = lnL. Необходимым условием максимума является уравнение Например, с помощью несложных преобразований можно показать, что оценками максимального правдоподобия для нормальной генеральной совокупности являются выборочное среднее
Следует заметить, что при n ® ¥ В соответствии с S2 вводится исправленное среднее квадратическое отклонение (эмпирический стандарт) S:
Относительная частота Наряду с точечными оценками параметров рассматривают интервальные оценки, которые позволяют получить информацию о точности и надежности оценивания неизвестного параметра, что особенно важно для выборок небольшого объема. Интервальной оценкой параметра θ называют числовой интервал Величина доверительного интервала, характеризующая точность оценки, зависит от объема выборки n (уменьшается с ростом n) и надежности γ (увеличивается с приближением γ к единице). Зачастую для определения доверительного интервала заранее выбирают число α = 1 – γ, называемое уровнем значимости, и находят два числа
В этом случае говорят, что доверительный интервал Поскольку в эконометрических задачах часто приходится находить доверительные интервалы параметров СВ, приведем примеры их построения. Доверительный интервал для математического ожидания нормальной СВ. Из генеральной совокупности нормально распределенной СВ Х с параметрами m и σ извлекается выборка объема n. В качестве точечной оценки математического ожидания m используется выборочное среднее В силу свойств многомерного нормального распределения [2] величина (статистика)
Доверительный интервал для дисперсии нормальной СВ. Для оценки σ 2 извлекается выборка объема n. В качестве точечной оценки дисперсии σ 2 = D(X) используется исправленная выборочная дисперсия S2. Учитывая, что статистика
Для заданного α критические точки определяются по соответствующим таблицам.
Популярное:
|
Последнее изменение этой страницы: 2016-06-05; Просмотров: 944; Нарушение авторского права страницы